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The goal of this work is the development and demonstration of an overset mesh approach
which enables arbitrary combinations of traditional second-order accurate finite-volume
discretizations and variable high-order accurate discontinuous Galerkin discretizations on
structured, unstructured and Cartesian meshes. The combinations of different solvers is
enabled through the development of a flexible driver routine coupled with a topology in-
dependent overset grid assembly module. The approach is designed to support dynamic
overset mesh problems, as well as applications with dynamic adaptive mesh refinement. The
developed approach is demonstrated for sample problems running in parallel using combi-
nations of unstructured finite-volume, unstructured discontinuous Galerkin, and Cartesian
discontinuous Galerkin solvers including dynamically adaptive meshes.

I. Introduction

Overset mesh approaches have been used for many years in computational fluid dynamics due to the
flexibility they afford for handling complex geometries and simulations involving bodies with relative motion
such as store separation, rotorcraft, and wind turbine configurations [1-4]. Most overset mesh applica-
tions involve the use of similar mesh components, i.e. either structured meshes overlapped with structured
meshes [5] or collections of overlapping unstructured meshes [6]. More recently, frameworks that support
combinations of different types of overlapping meshes have been developed. One example is the HELIOS
rotorcraft software [4], which supports arbitrary combinations of unstructured, structured, and cartesian
meshes, along with the different discretizations used on these meshes. HELIOS applications have shown
how the use of adaptively refined Cartesian meshes in off-body regions can be enabling for capturing wakes
and vortices with high levels of accuracy [4,/7,8]. High-order accurate discretizations have generated much
interest over the last decade for computational aerodynamics due to the potential these methods hold for
achieving higher accuracy at reduced cost and improved scalability on emerging parallel computer architec-
tures. Naturally, the use of high-order methods in the context of overset mesh applications has been pursued
by various authors who have shown that design accuracy can be maintained in an overset mesh framework
for high-order discontinuous Galerkin (DG) discretizations [9-12].

However, high-order DG discretizations are best suited for flow regimes with smooth variations and
limited singularities, and these methods remain more costly and less robust than traditional second-order
accurate finite-volume methods for many practical aerodynamic problems. Therefore, the optimal choice of
solvers for overset mesh applications may be problem dependent and in many cases combinations of low-order
and high-order discretizations may be desirable.

The objective of this work is the development and demonstration of a modular flexible paradigm for
combining various types of low and high-order discretizations within a common overset mesh framework.
The approach currently supports combinations of finite-volume unstructured, high-order DG unstructured,
and high-order DG Cartesian discretizations within a unified overset mesh framework. The framework
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allows for arbitrary instances of each solver to run on the same or separate processor groupings in parallel,
and supports dynamic mesh motion as well as dynamic adaptive mesh h- and p-refinement (AMR). The
framework is also designed to enable tight coupling between different component solvers by supporting fully
implicit solution methods across disparate discretizations and mesh types.

Our approach is modeled on the multi-solver paradigm developed in reference [4] as shown in Figure
where a near-body unstructured mesh solver is overset with an off-body Cartesian solver which supports
dynamic AMR. The principal components of our approach include a driver routine which orchestrates the
various solvers, the Topology Independent Overset Grid Assembler (TIOGA), and the various low- and
high-order solvers which operate on the constituent meshes.

e R HH R EEaEmEEmEEmESEmmaEmEEEmas
Connectivity |:

near-body

Cartesian

Figure 1: Example of a HELIOS dual-mesh, dual-solver overset approach .

In the following sections, the main driver routine is described along with details of the interface, followed
by descriptions of the unstructured DG solver DG3D, the unstructured finite-volume solver NSU3D, the
structured dynamic AMR DG flow solver SAMCartDG, and the TIOGA overset mesh assembler. Lastly, the
feasibility of the overset framework is demonstrated with results showing verification of order of accuracy
and large scale simulations of overset and dynamic AMR capabilities.

II. Driver

In a multi-solver framework a main driving routine is needed to coordinate and run each solver. The
driver in this work is similar to the multi-solver framework developed by by Wissink et al. in Ref with
some notable differences. In this previous work, a Python interface is used to dynamically load different
solvers, where each individual flow solver is typically run in sequence across all processors. This has the
advantage of automatically load balancing but has some disadvantages. Each flow solver has a different
amount of computational work and scales differently and in many instances concurrent execution of the
different solvers on the optimal number of processors would result in more effective resource utilization.
Also, high-order implicit solvers have a very large memory footprint and running each solver on the same
group of processors may have significant implications for memory requirements.

The driver in this work is written in C++, handles multiple coding languages (C, C++, and Fortran) and
parallel communication through MPI. It has the flexibility of running flow-solvers sequentially on the same set
of processors or concurrently on different processor groups. The solvers used in this work are self contained
and only communicate with each other through the TIOGA overset mesh assembler. TIOGA performs both
implicit hole cutting on all meshes and executes the fringe cell interpolation between overlapping meshes. All
flow solvers and other codes that are controlled by the driver will be referred to as modules. These modules
can include near-body and off-body flow solvers, overset domain connectivity assemblers, as well as other
disciplinary solvers such as structural solvers, mesh deformation solvers, and even atmospheric boundary
layer solvers to provide turbulent inflow conditions for wind turbine simulations [7].

Each module is compiled individually using the position independent code flag (-fpic or -fPIC) to make a

2 of [

American Institute of Aeronautics and Astronautics



shared object. These shared objects can later be used when dynamically loading libraries. The driver contains
interfaces to each module and decides during runtime which dynamic library to load. The interfaces on the
module side use C-binding. For C++ this is enabled by using extern “C” in front of interface functions,
which also avoids name mangling. Name mangling is a feature that compilers use to create unique names in
the shared object for linking to later on. To use these functions inside the shared object one must manually
search for their assigned names, which can be compiler dependent. C-binding forces the compiler to use the
specified name and makes it easier to find these functions in the shared object. In Fortran C-binding is done
by using the ISO_C_BINDING module which gives access to C pointers (C_PTR) and C function pointers
(C_FUNPTR) and also allows the name of the routine to be specified in the shared object. This is helpful
because interface functions that are located inside Fortran modules have names that are compiler dependent
and are combinations of the module name and the function name. Below is an example of using C-Binding
in a F90 routine.

module driver_interface_module
contains
subroutine set_pointers(soln_ptr, &
iblank_ptr, &

callback_function_ptr) bind(C,name="driver_interface_set_pointers")

use solution_module, only : soln,iblank
use iso_c_binding

implicit none

type(c_ptr),intent(out) :: soln_ptr
type(c_ptr) ,intent (out) :: iblank_ptr
type (c_funptr) ,intent (out) :: callback_function_ptr

soln_ptr = c_loc(soln(1))
iblank_ptr = c_loc(iblank(1))
callback_function_ptr = c_funloc(count_receptor_nodes)

end subroutine

end module

The driver can handle an arbitrary number of groups and groupings of processors which are specified
all through input files. Figure [2] shows an outline of a simple driver using two near-body solvers and one
off-body solver connected using TIOGA. In this case at every time step the near-body mesh undergoes a
prescribed motion and the off-body performs a mesh adaption step.

ITI. Code Modules

This section describes the code modules incorporated into the driver. The first two are unstructured near
body solvers DG3D and NSU3D, the third is a structured off body solver SAMCartDG, and the fourth is
the overset mesh connectivity assembler TIOGA.

A. Unstructured near-body DG solver: DG3D

The first near-body solver is a parallel 3D Discontinuous Galerkin (DG) finite element method. The solver
can handle hybrid mixed element meshes (tetrahedra, pyramids, prisms, and hexahedra), curved elements,
and incorporates both p-enrichment and h-refinement capabilities using non-conforming elements (hanging
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Figure 2: Outline of an unsteady driver example with mesh movement and adaption.

nodes). It is used to discretize the compressible Navier-Stokes equations as well a PDE-based artificial vis-
cosity equation [14H16] and the Spalart-Allmaras turbulence model (negative-SA variant) [17]. The advective
fluxes are calculated using a Riemann solver. Implemented Riemann solvers include: Lax-Friedrichs ,
Roe , and artificially upstream flux vector splitting scheme (AUFS) . The diffusive fluxes are handled
using a symmetric interior penalty (SIP) method . The time derivative can be approximated using
the explicit scheme RK4 or an implicit BDF2 scheme. The implicit solver uses a Newton-Raphson method
to solve the non-linear set of equations. These equations are linearized to obtain the full Jacobian. The
linear system is solved using a flexible-GMRES [23] (fGMRES) method. To further improve convergence
of f{GMRES a right preconditioner can be applied to the system of equations. Preconditioners that have
been implemented include Jacobi relaxation, Gauss-Seidel relaxation, line implicit Jacobi, and ILU(0). This
solver has been used to successfully to solve hypersonic flows , turbulent flow over wings and aircraft,
Direct Numerical Simulations (DNS) of Taylor Green Vortex, and overset simulations [10].

B. Unstructured near-body finite volume solver: NSU3D

A second near-body solver, NSU3D, is an unstructured mesh multigrid Unsteady Reynolds-averaged Navier-
Stokes (URANS) solver developed for high-Reynolds number external aerodynamic applications. NSU3D
employs a second-order accurate vertex-based discretization, where the unknown fluid and turbulence vari-
ables are stored at the vertices of the mesh, and fluxes are computed on faces delimiting dual control volumes,
with each dual face being associated with a mesh edge. This discretization operates on hybrid mixed-element
meshes, generally employing prismatic elements in highly stretched boundary layer regions, and tetrahedral
elements in isotropic regions of the mesh. A single edge-based data structure is used to compute flux bal-
ances across all types of elements. The single-equation Spalart-Allmaras turbulence model as well as a
standard k — w two-equation turbulence model are available within the NSU3D solver.

The NSU3D solution scheme was originally developed for optimizing convergence of steady-state prob-
lems. The basic approach relies on an explicit multistage scheme which is preconditioned by a local block-
Jacobi preconditioner in regions of isotropic grid cells. In boundary layer regions, where the grid is highly
stretched, a line preconditioner is employed to relieve the stiffness associated with the mesh anisotropy .
An agglomeration multigrid algorithm is used to further enhance convergence to steady-state . The
Jacobi and line preconditioners are used to drive the various levels of the multigrid sequence, resulting in a
rapidly converging solution technique.

For time-dependent problems, first-, second-, and third-order implicit backwards difference time dis-
cretizations are implemented, and the line-implicit multigrid scheme is used to solve the non-linear problem
arising at each implicit time step. NSU3D has been extensively validated in stand-alone mode, both for
steady-state fixed-wing cases, as a regular participant in the ATAA Drag Prediction workshop series , as
well as for unsteady aerodynamic and aeroelastic problems, and has been benchmarked on large parallel
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computer systems [33].

C. Cartesian Off-body Solver: SAMCartDG

The off-body solver is a combination of a block-structured Cartesian high-order discontinuous Galerkin solver
known as CartDG [34], and an open source adaptive mesh refinement (AMR) framework called SAMRAI
developed at the Lawrence Livermore National Lab [35/36]. The off-body solver is referred to as SAMCartDG
[34]. SAMRATI uses a block-structured grid hierarchy of nested refinement levels. Each level is composed of a
union of logically-rectangular grid regions. On each level the grid spacing is fixed and the ratio of refinement
between two consecutive levels is generally two, although the environment allows for other refinement ratios
pending the construction of appropriate refinement and coarsening operators. SAMRALI performs all AMR
grid generation, load balancing, and parallel communications between blocks. If regridding is requested, cells
are tagged for refinement using a feature detection criteria implemented by the user. The current tagging
algorithm is based on vorticity magnitude.

1. CartDG: Cartesian High-Order Block Solver

The block solver is a discontinuous Galerkin Finite Element Method based compressible Navier-Stokes solver.
It is developed for an arbitrary order of accuracy. The stand alone solver has been demonstrated for
various inviscid and viscous problems, most notably the Ringleb flow [37] and the Taylor-Green Vortex [38],
respectively.

CartDG’s parallel scalability up to 32,768 processors has been previously demonstrated [34] on the NCAR
Wyoming supercomputer named Yellowstone [39]. Further parallel scalability tests have been conducted on
Argonne Leadership Computing Facility’s (ALCF) Mira Supercomputer which has 786,432 processors capable
of 10 petaflops peak performance. Mira is an IBM Blue Gene/Q system composed of 1600 MHz PowerPC
A2 cores with a 5D torus interconnect.

A strong scalability test was conducted using a range of processors from 8,192 to 524,288 processors
with one MPI rank per core and two MPI ranks per core. The strong scalability results are obtained by
performing a simulation of the fully periodic Taylor-Green vortex problem using a 512 x 512 x 512 mesh
at p = 4, fifth order accuracy. The problem contains approximately 16.8 billion degrees-of-freedom running
for 5 time steps using RK4. Tables [I] and [2] present the execution times for one MPI rank per core and
two MPI ranks per core, respectively. Figure |3| demonstrates the time to solution and the strong scaling
percentage up to 524,288 processors using a one and two MPI ranks per processor. The strong scaling results
assume the time to solution for 8,192 processors is ideal. We note that executing two MPI ranks per core is
approximately 64% faster in execution time in comparison to one MPI rank per processor. This trend holds
to over one million MPI ranks.

Table 1: Mira Scalability: One MPI Rank per Core.

Cores  Time (sec) Strong Scalability %  Speedup

8,192 161.32199 100.00% 8192
16,384 80.76674 99.869% 16362.54
32,768 40.39420 99.842% 32716.23
65,536 20.43908 98.660% 64657.82
131,072 10.40850 96.869% 126968.14
262,144 5.27547 95.561% 250507.43
524,288 2.58876 97.369% 510493.98

D. Overset Mesh Assembly: TIOGA

The overset grid connectivities are handled through the TIOGA interface (Topology Independent Overset
Grid Assembler) [10]. The TIOGA overset grid assembler relies on an efficient parallel implementation of
Alternating Digital Trees (ADT) [40] for point-cell inclusion tests. Multiple grids are loaded in parallel and
TIOGA computes the IBLANKing information required by the flow solver, as well as the cell donor-receptor
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Table 2: Mira Scalability: Two MPI Ranks per Core.

Cores  MPI Ranks Time (sec) Strong Scalability % 2:1 Ranks Time Ratio

8,192 16,384 97.297702 100.00% 1.658
16,384 32,768 48.75938 99.773% 1.656
32,768 65,536 24.77189 98.194% 1.631
65,536 131,072 12.39752 98.102% 1.649
131,072 262,144 6.311845 96.344% 1.649
262,144 524,288 3.21362 94.614% 1.642
524,288 1,048,576 1.57219 96.698% 1.647

@=® One MPI Rank Per Core 100 @=® One MPI Rank Per Core
A=A Two MPI Ranks Per Core A=A Two MPI Ranks Per Core

99

98

97

Time to Solution
Strong Scale Percentage

96

95

10° 9

8192 16384 32,768 65536 131,072 262,144 524,268 8192 16384 32,768 65,536 131,072 262,144 524,268
Number of Cores Number of Cores
(a) Time to Solution (b) Strong Scaling Percentage

Figure 3: CartDG strong scalability on ALCF’s Mira supercomputer up to 524,288 processors on a problem
containing nearly 16.8 billion degrees-of-freedom.

information. We use the notation IBLANK which is an array of integers used to identify cell type in the
overset framework. In this notation a fringe cell has IBLANK value of: IBLANK = —1, a hole cell: IBLANK
=0, and a field cell: IBLANK = 1. A hole cell occurs when an outer mesh overlaps an inner mesh with an
enclosed surface (such as a sphere). This hole cell does not contain a donor cell and is usually eliminated
from the discretization. This is allowed because a collection of hole cells needs to be completely surrounded
by fringe cells. This in turn means that the field cells only interact with fringe cells. If a field cell neighbors
a hole cell then the overset connectivity fails. The receptor cells receive solution data from the donor cells
through interpolation as shown in Figure[d] In order to interface TIOGA with a high-order method several
callback functions need to be supplied. This allows high-order interpolation which is required to maintain
overall high-order solution accuracy.

There are four callback functions that are needed to interface TIOGA with a high-order method. The
first callback function is a function which generates a list of receptor points. Typically these are the nodes or
cell centers in a mesh, but for a high-order discretization additional points are needed within each cell. The
second function is a high-order donor inclusion test which is necessary for curved elements. Once donor cells
are located the third function returns the weights for the high-order interpolation on the donor cells. The
last callback function converts the interpolated solution at the receptor points back into solution coefficients
or modal coefficients on the receptor cell.

There are two approaches for transferring solution data: the first uses a mass matrix approach and the
second a Vandermode matrix approach. One of these two methods is necessary because it is the transfer of
solution coefficients rather than the actual solution values that are needed in a modal finite-element method.
Both the mass matrix and the Vandermode matrix methods require solution values from the donor cells at
specific points on the receptor cell. Figure |5 shows the locations of the receptor nodes for each method. For
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Figure 4: Receptor and donor cell overset connectivity.

Figure 5: Locations of receptor nodes on a quadrilateral element for mass matrix method (left) and Vander-
mode matrix method (right).

the mass matrix method the interpolation points correspond to the quadrature points used in the volume
integral evaluation of the residual, while for the Vandermode matrix method the interpolation points consist
of equidistant points. The interpolation points become the receptor points in the first callback function and
then the receptor nodes are used by TIOGA to determine the donor cells.

To find the donor cells a callback function for a high-order curved cell inclusion test is used. TIOGA
uses its ADT to search for donor cells and the callback function is used to determine if the receptor point is
located inside a donor cell. For straight sided elements TIOGA can handle this process using straight forward
geometric inclusion tests. However for a curved element, a specialized callback function is needed. To test
if a point is inside an element, the physical coordinates (z,y, z) are converted to natural coordinates (r, s,t)
in the mapped space of the standard isoparametric element, as shown in Figure[6] The natural coordinates
are found using the following equations:

Nmap Nmap Nmap

Z ¢m(r7 57t)b1m =, Z ¢m(7”, sat)me =Y, Z ¢m(7“, Sat)b?)m =z,
m=1 m=1 m=1

where b are the physical coordinate mapping coeflicients, 1) are the mapping basis functions, and 1,4, are the
number of mapping coefficients for the element. This gives three non-linear equations with three unknowns.
To solve this problem a Newton-Rhapson method is used which can be written as:

% % % or Z:;zllp ¢m(ra S t)blm -
% % % 65 = - Z:’Z;alp 1/Jm(7‘, S, t)me )
9 2] a Nma

Fi 87:7; Fj ot m:lp wm(ry S, t)b3m -z

Once the natural coordinates are found it is trivial to test if the point lies inside the element. For example,
a tetrahedra has four faces that are each associated with a plane that can be tested for inclusion. If any of
the following inequalities in Table [3| are true then the point does not lie inside the element. In this table, the
parameter € is a small number, if this number approaches zero then strict inclusion is required. However, if
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this number is larger, the inclusion test will be less restrictive and extrapolation (instead of interpolation)
is allowed.

Figure 6: Curved tetrahedron in physical coordinates (left) and natural coordinates (right)

tetrahedron pyramid prism hexahedron
r+l<—e |r+l<—-e|r+l<—e| |r|-1>c¢
s+l<—e | s+l<—e| |s|]—=1>e€| |s|]—1>c¢
t+l<—e |t+l<—€e|t+1l<—€e| [t|-1>¢€
r+s+it>e¢ r+t>e€ r+t<—e
s+t>e

Table 3: Inequalities for each element type for inclusion.

Once a donor cell is found the third callback function creates the interpolation weights. Evaluating
the solution basis functions at the natural coordinates found from the inclusion test creates a high-order
interpolation for the donor cell. The solution ¢ is passed back to the receptor cell by:

Mmode

q(r,s,t)= Z L (7, 8,t) am
m=1

where ¢2, (r, s,t) are the donor cell basis functions (where superscript d represents donor) evaluated at the
receptor node locations, 1,,.4e are the number of solution basis functions, and a,,, are the solution coefficients
on the donor cell. TIOGA transfers, in parallel, all of the interpolated solutions from the donor cells to the
receptor cells. The fourth callback function converts these solution values back into coefficients on the
receptor cells. As discussed previously two approaches have been implemented; the first is the mass matrix
method. This approach starts off with a Galerkin projection:

Mmode

> Gk Eonr Er)an = q(Ear ok Ean)

n=1

where ¢! are the solution receptor basis functions (where superscript r represents receptor), nmode is the
number of solution receptor basis functions, &;; are the quadrature points (where the indices i = 1,2,3 and
k runs from one to the number of quadrature points ny,), ¢ are the solution values, and a,, are the receptor
solution coefficients to be solved for. To solve for the coefficients both sides are multiplied by the receptor
cells basis function and integrated over the cell:

Mmode

; /Q</>;“n¢;andQ:/Q¢quQ.

This creates a mass matrix defined as:

an:/d’:n%dQ
Q
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and the right hand side becomes:

Nqp

= [ mad@ =3 0m(€rn ars E)aEan, o, )
a k=1

where w;, are the quadrature weights. To solve for the coefficients the right hand side is integrated and the
mass matrix is inverted to give:
a=M1f.

The mass matrix is LU factorized ahead of time and only a forward/backward solve is needed to solve for a.
The second approach is the Vandermode method. Again, this starts with a projection operator:

Mmode

Z ¢n(<1ma <2m7 CBm)an = Q(Clmv <2m7 <3m)
n=1

except now the Vandermode matrix:
an = ¢n(C1ma Cva <3m)

is constructed by evaluating the basis at the points (;,,, where the number of points are equal to the number of
basis functions, making the Vandermode matrix square. The solution coeflicients are solved for by inverting
the Vandermode matrix:

a=Vlg

for the receptor solution coefficients. For efficiency the Vandermode matrix is constructed for every element
type and polynomial degree and factorized ahead of time so that only forward/backward solves are needed.

There are two downsides to the mass matrix method. The first is that even if the mass matrix is
diagonal the right hand side still requires integration with respect to the basis. The second is that, for
tetrahedra, pyramids, and prisms, the number of quadrature points is greater than the number of basis
modes. Also, for curved elements more quadrature points are needed making the mass matrix approach even
more costly. Due to this the mass matrix method requires more computational work than the Vandermode
matrix method. However, a benefit of the mass matrix method is that it gives a more optimal approximation
to the interpolated values compared to the Vandermode approach at equidistant points. The Vandermode
matrix at equidistant points can suffer from interpolation errors at high polynomial degrees.

For SAMCartDG a simplification occurs due to the nodal Lagrange polynomial basis formed using the
Gauss Legendre points. This set of points is used for either the Vandermode or mass matrix approaches and
both give the same end result. In the case of the Vandermode matrix approach, each basis function equals
one at its corresponding quadrature point and zero at every other quadrature points. This in turn creates an
identity matrix for the Vandermode matrix. For the mass matrix approach the number of quadrature points
equals the number of modes and the mass matrix is diagonal for this basis. The nodal basis simplifies the
right hand integration so that it is performed at only one quadrature point. This means the mass matrix can
be inverted and absorbed into the right hand side integration giving an identical result to the Vandermode
approach.

IV. Results

Three test cases are chosen to demonstrate the ability to simulate unsteady separated flows in an overset
framework. The first case is a low Reynolds number, DNS of flow over a sphere. This case tests the ability
to combine two high-order DG codes by using the unstructured DG solver on the near-body and the AMR
DG solver on the off-body. The second case is a simulation of a higher Reynolds number turbulent flow
over a rectangular lifting wing. This case tests the ability to combine different discretizations, one being a
node based finite-volume RANS solver and the other being a cell-based AMR DG solver, and to capture and
preserve wing tip vortices. The last case consists of the simulation of turbulent flow over the 5 MW NREL
wind turbine, again using the finite-volume RANS solver and the AMR DG solver. This case demonstrates
the capability of simulating flows with bodies in relative motion as well as capturing vortical structures and
wakes. All three of these cases showcase the ability to simulate problems in an overset framework with the
dynamic mesh adaptation in the off-body.
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A. DNS of flow over a sphere

The first case is a simulation of an unsteady, low Reynolds number, DNS flow over a sphere. Flow over a
sphere is a good validation case because it has been studied extensively in both experiments and numerical
simulations. For this particular simulation the free-stream Mach number is M = 0.3 and the Reynolds
number is Rep = 1000, based on sphere diameter. This case combines the near-body unstructured DG
solver with the off-body AMR DG solver using an overset mesh. The near-body mesh is a strand grid which
consists of prismatic cells. This grid is created by extruding (radially outward) an unstructured triangular
mesh on the surface of the sphere. The near-body DG solver is third order accurate (p = 2) in space and
is solved on 64 cores. The off-body DG solver is fourth order accurate (p = 3) in space and solved on 256
cores. Four levels of grid refinement are used in this simulation. Figure [7] shows the wake created by the
sphere as iso-contours of vorticity magnitude. Also, shown is the adaptive off-body grid which closely tracks
the vortices in the wake as they travel downstream.

Figure 7: Iso-contours of vorticity magnitude for flow over a sphere with Rep = 1000.

Validation of this case is performed by comparing the drag coefficient on the sphere to both experimental
data and other simulations. Since the flow is unsteady the drag coefficient is time averaged. The time history
of the drag coefficient is shown in Figure [Ra] along with a running average. Also shown in Figure [8h]is a close
up view of the final running average. The running average is calculated using a moving average with a bin
size of 2.5 x 10° time steps. This averaging procedure ensures that the initial transients do not adversely
affect the time-averaged drag coefficient of the fully developed flow. The final time averaged drag coefficient

Table 4: Drag coefficient compared with data from literature.

Rep Present Ref. Ref. Eqn

1000  0.475 0.4818 0.476 0.4841

is shown in Table [4] along with experimental data, simulation data, and data correlation. The correlation
for the drag coefficient in uniform flow around a sphere is given by the following equation:

~7.94
26(22)  0ann () 0.50
24 e
Fen) 263,000 N ( Re; > (1)

Rep 5.0 \ 12 Rep \ 50 461,000
1+ (E) 1+ (263,(])300)

where Rep is the Reynolds number based on diameter of the sphere . The presented drag coefficient is
very similar to the referenced numerical simulation and reasonably close to the experimental data [41].

Cp =
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Figure 8: Drag history and running average of flow over a sphere, Rep = 1000 and Mach = 0.3.

This demonstrates that the DG solvers combined in an overset framework are capable of accurately simulating
unsteady, low Reynolds number flow around simple geometries. Also, high-order methods combined with
AMR result in a very large reduction in the number of degrees of freedom necessary to solve problems of
this type.

B. NACA 0015 wing

The second case demonstrates the capability of simulating unsteady, turbulent flow over a rectangular square-
tipped lifting wing. The wing is based on a constant cross-section NACAO0015 wing, and has a finite span
of 6.6 chords. For this case the Mach number is 0.1235 and the Reynolds number is 1.5 million (based on
chord length). NSU3D is used on the near-body and the AMR DG solver is used on the off-body. This case
is used to demonstrate the ability to combine a node-based finite-volume discretization with a cell-based,
high-order, DG discretization in an overset framework, and to accurately capture tip vortices. NSU3D solves
the unsteady RANS equations closed by the Spalart-Allmaras with Rotation Correction (SA-RC) turbulence
model. The time discretization for NSU3D is the implicit, second-order accurate BDF2 scheme. The off-
body AMR DG solver uses 9 levels of refinement and a second order (p = 1) discretization in space and
second order explicit discretization in time (RK2). The NACA 0015 wing has been studied experimentally
by McAlister and Takhashi [44]. Computational studies have been performed by Wissink [45], Sitaraman
and Baeder [46], and by Hariharan and Sankar [47]. Figure [J] shows the time evolution of lift and drag on
the wing for an inflow at 10 degrees incidence. At these conditions, the experimentally reported lift and
drag coefficients are 0.88 and 0.05, respectively [44], which are in good agreement with the final average
time history values in Figure[d] The finite-span lifting wing generates counter rotating tip vortices which are
visualized as iso-surfaces of vorticity magnitude as shown in Figure Using AMR, these wing tip vortices
can be resolved and accurately tracked downstream.

To determine how accurately the vortices are being captured, the vertical velocity can be compared to
experimental values [44] downstream. These comparisons are made for the case where the wing is at 12
degrees incidence to the incoming flow. At these conditions, the simulation resulted in flow separation on
the wing after a long time integration period. Therefore, the comparison is made at a point in time prior
to the occurrence of flow separation, when the lift coefficient reached a value of 1.15, which is close the
the experimentally reported value for this incidence. Figure [11] shows the vertical velocity of the simulation
compared with the experiment at 2, 4, and 6 chords downstream from the wing. These comparisons are made
in the spanwise direction (y-dir) at z/C = —0.1, where C is the chord length. There is about 40% error in the
downstream vortex velocity strength. The weaker vortex could be attributed to having to pass through the
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Figure 9: Lift and drag history of NACA 0015 wing computation at 10 degrees incidence for a Mach number
of 0.1235 and Reynolds number 1.5 million.

near-body grid and dissipating before it enters the off-body grid. This level of agreement is similar to that
reported in reference [45] using a finite-difference off-body AMR strategy with the same near-body mesh.

C. 5MW NREL Wind Turbine

The final case is a large scale simulation of the 5SMW NREL wind turbine [48]. The inflow velocity is 11.4
m/sec, which corresponds to a free-stream Mach number is 0.033, the Reynolds number is 1.77 x 107 based
on a mean chord length of 3.493 meters, and the blades spin at a prescribed rate of 12 rpm. This case is a
demonstration of combining two discretizations (finite-volume node-based on the near body and AMR DG
cell based on the off-body) in an overset framework with bodies moving in relative motion. The near-body
solver is NSU3D and it handles the tower and the three spinning blades. The unsteady RANS equations
are solved and the time discretization is a GCL compliant BDF2 scheme. Each of the 4 grids (3 blades and
tower) are given 16 cores for a total of 64 near-body cores. The off-body solver is SAMCartDG running at
second order accuracy in space and time. It is solved on 2048 cores and allows for 7 levels of mesh refinement.
Figure [12] shows iso-contours of vorticity magnitude and a slice of the AMR grid. After one full rotation of
the blades there are about 10 million elements in the off-body solver (80 million DOF’s per solution variable).
The tip vortices are well captured and the AMR solver tracks these downstream.

V. Conclusions

We have developed and demonstrated a general framework for combining different discretizations on
different mesh types for dynamic and adaptive overset mesh problems. The coupling of the different solvers
is managed by a driver routine and the overset mesh connectivities through TIOGA. The capability of this
framework was demonstrated first on low Reynolds number flow over a sphere. The drag coefficient for this
problem matches closely to experiments. The second case involves the turbulent flow around a NACA 0015
wing. This simulation demonstrates the ability to capture wing tip vortices very far downstream using the
AMR DG solver. The final case is a large scale demonstration of a full 5MW NREL wind turbine. This
demonstrates the capability of handling mixed discretizations and multiple moving grids. The tip vortex is
captured and advected downstream accurately due to the AMR DG solver. This capability would not be
possible without using a multi-solver approach. Each solver is highly specialized and when combined allow
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Figure 10: Iso-surfaces of vorticity magnitude for flow over NACA0015 wing at 12 degrees incidence and
Mach number of 0.1235 and Reynolds number 1.5 million.
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Figure 11: Vertical velocity of simulation (solid blue line) and experimental data (black symbols) at 2, 4,
and 6 chords downstream of NACA 0015 wing at z/C' = —0.1.

for simulations that are larger, more realistic, and more accurate than previously possible. Future work is
underway to demonstrate this capability using much higher orders of accuracy in the off-body region. This
requires the implementation of an h-p adaptive refinement strategy in the off-body region, which is currently
under development.
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Figure 12: Iso-contours of vorticity magnitude for flow around a NREL 5MW wind turbine.
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