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Analysis of the NREL WindPACT-1.5MW wind turbine is performed under uniform
inflow conditions using a high-fidelity numerical simulation with a full rotor model using
detailed blade geometry. Analysis is performed using measurements of aerodynamic forces
and coefficient of pressure, and wake characteristics are studied using Reynolds stress
analysis and Proper Orthogonal Decomposition in the near-wake and mid-wake regions.

I. Introduction

Wind energy is becoming a critical renewable resource for the global energy portfolio as wind turbine de-
signs have grown in scale, thus driving down power production cost.1 Understanding the aerodynamics

of the wind turbine is an essential aspect for energy production optimization, not only for the individual
turbine but also for the complete wind farm. Exploration of wind turbine yawing2–5 for wind farm optimiza-
tion introduces complex aerodynamics and possible structural effects. These complex aerodynamics, such
as flow separation, cannot be captured accurately using lower-fidelity methods, such as actuator disk6,7 and
actuator line8–10 methods. High-fidelity blade-resolved simulations are required for accurate prediction.

Blade-resolved wind turbine simulations were previously intractable due to immense computational re-
quirements. However, supercomputers have continuously grown by an order of magnitude in computational
power approximately every four years11 making accurate blade-resolved simulations increasingly feasible.
One of the first blade-resolved wind turbine simulations was performed by Duque et al.12 in the late 1990s,
and development of high-fidelity wind turbine simulation capabilities13–29 have continued.

The goal of this work is to explore analysis techniques that illuminate the impact of complex blade
aerodynamics on wake characteristics. First principles, founded in Newton’s third law of motion, imply the
wind turbine bodies produce equal and opposite forces on the flow. Thus, wake analysis must incorporate
aerodynamic force analysis. Hassanzadeh et al.30 used the concept of Newton’s third law to design small-
scale wind turbines by matching normalized normal and tangential force distributions of full-scale wind
turbines with the goal of matching non-dimensional wake characteristics. Sandia National Laboratory has
taken a similar first-principles approach by matching relative circulation.31 First, this work will measure
aerodynamic force distribution and coefficient of pressure on the wind turbine blades to infer the forces that
generate the wake, followed by analysis of the wake.

Wind turbines wakes are generally divided into three spatial regions: near-wake, mid-wake, and far-wake.
The near-wake region starts at the wind turbine and continues approximately one to three rotor diameters
downstream. This region is influenced by the rotor angular velocity and blade geometry and contains
distinct blade tip and root vortices. The mid-wake region contains a mixing shear layer and tip vortices
that become unstable through vortex merging and hopping, which form into larger flow structures. In the
far-wake region, found beyond six rotor diameters downstream, the transition to turbulence occurs as larger
vortex flow structures begin to break down into progressively finer turbulence structures. In this work, the
turbulence is characterized using Reynolds stress analysis, and the larger wake structures are investigated
using Proper Orthogonal Decomposition.

Proper Orthogonal Decomposition (POD), known in Statistics as Principal Component Analysis, is a
mathematical transformation used to convert data, possibly correlated, into linearly-independent uncorre-
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lated components. The first component contains the largest possible variance, and each succeeding compo-
nent containing less variance. POD is used to construct an uncorrelated orthogonal basis set of the flow
structures, allowing lower-dimensional analysis. POD has been applied to turbulent flow problems first by
Lumley32 and later by Sirovich et al.33 and Berkooz et al.34 It has also been used to develop reduced order
models for flow problems.35 POD has recently been used for wind turbine wake analysis in several simulation
works,36,37 and experimental works to study wakes behind bluff bodies.38 In this work, POD is applied to
simulation data extracted from the near-wake and mid-wake regions.

This paper is organized as follows: In Section II, the computational methodology is presented, Section III
outlines the wind turbine problem and computational simulation setup, Section IV highlights the analysis
approach used for Section V, where the results are presented. Lastly, conclusions are drawn, and future
directions are outlined in Section VI.

II. Numerical Methodology

This work utilizes the Wyoming Wind and Aerospace Applications Komputation Environment (W2A2KE3D)29

framework for high-fidelity blade-resolved wind turbine simulations. The W2A2KE3D framework has been
applied to several wind energy applications,28 including a full blade-resolved wind farm simulation29 con-
taining 48 wind turbines on over 22,000 cores, and it has been scaled up to 144 wind turbines using over
67,000 cores. Additionally, it has been applied to several aerospace applications.39,40

W2A2KE3D supports multiple computational fluid dynamics (CFD) solvers and multiple computational
meshes simultaneously through an overset grid method. The overset mesh system generally consists of a
collection of near-body and off-body meshes as shown in Figure 1. The near-body meshes are inherently
unstructured and highly anisotropic, which are used to represent the complex geometry, and resolve the
boundary layer of the wind turbine bodies. The off-body mesh is a dynamically adaptive Cartesian grid
system, which allows for computationally efficient solvers, efficient storage, and ease of dynamic mesh adap-
tion. This multiple mesh paradigm allows for effective use of solver and mesh technologies in varying flow
conditions, particularly in the context of wind energy applications.

The two CFD solvers used in W2A2KE3D for this work are NSU3D, the near-body mesh solver, and
dg4est, the off-body mesh solver. NSU3D41,42 is an unstructured finite-volume solver for the Unsteady
Reynolds Averaged Navier-Stokes equations. It contains several turbulence models, such as the Spalart-
Allmaras (SA),43 K-Omega,44 and the Delayed Detached Eddy Simulation (DDES)45 turbulence models with
rotation/curvature correction.46 The off-body solver, dg4est,39 is a high-order discontinuous Galerkin finite-
element method embedded into the p4est47,48 adaptive mesh refinement framework, and has hp-adaption
capabilities. It solves the compressible Navier-Stokes Equations, and uses a Constant Smagorinsky Large
Eddy Simulation49 turbulence model. The overset mesh assembler is TIOGA,50–52 which is used to interpo-
late solutions between the near-body and off-body meshes.

Figure 1. Overset mesh technology used to incorporate complex geometry and effective mesh adaption for wake
capturing.

2 of 22

American Institute of Aeronautics and Astronautics



III. Problem Description

This study uses a 1.5MW wind turbine from the NREL Wind Partnership for Advanced Component
Technologies53 (WindPACT) Project, which was used for a turbine rotor study.54 The WindPACT-1.5MW
wind turbine is a three-bladed design with a rotor diameter of 70 m, rotation rate of 20.5 rpm, and an axial
velocity of 10.7338 m/s corresponding to a tip-speed ratio of λ = 7.0. A blade pitch angle of 2.6◦ is applied
with a 0◦ coning angle.

The rotor geometry is composed of three identical unstructured blade meshes. The unstructured blade
mesh is trimmed to approximately 1 meter from the blade surface, as shown in Figure 2. The computational
blade mesh is composed of approximately 3.24 million nodes with 687,965 tetrahedra, 49,061 pyramids, and
6,150,915 prisms. The smallest element width is 4.937 microns. The total rotor geometry mesh aggregates
to approximately 9.72 million nodes. Each blade mesh is partitioned onto 144 cores, giving a total of 432
cores for the near-body solver.

Figure 2. NREL WindPACT-1.5MW wind turbine unstructured blade mesh with 3.24 million nodes.

The near-body mesh flow solver uses a Delayed Detached Eddy Simulation45 turbulence model, and the
off-body adaptive Cartesian mesh solver uses a Constant Smagorinsky Large Eddy Simulation49 turbulence
model. The off-body discontinuous Galerkin flow solver uses p = 1, second-order, polynomials in mesh cells
near the blade surface and transitions to p = 3, fourth-order, polynomials in mesh cells away from the
surface with a layer of p = 2 mesh cells in between to smoothly transition the solution. The flow solvers
use a global time step corresponding to 1/3◦ rotor rotation, which is followed by flow solution interpolation
between the near-body and off-body meshes performed by the overset mesh assembler. The near-body solver
performs implicit time steps using the second-order accurate Backwards Difference Formula method, and the
off-body uses multiple explicit time steps using the fourth-order accurate Runge-Kutta four-stage method.
This spatial and temporal resolution has been determined in previous work29 as the minimum necessary
resolution for ensuring accurate turbine power and thrust predictions.

The simulation is performed without the presence of the wind turbine tower or nacelle. The simulation
conditions use uniform inflow, with the fluid parameters set to an ideal fluid (air) of density 1.225 kg/m3,
and a kinematic viscosity of 1.5 · 10−5m2/s. The simulation is performed for 50 rotor revolutions starting
with 600,000 degrees of freedom in the off-body mesh and grows to over 600 million as the mesh adapts to
the wake. The number of cores used for the off-body solver grows to 10,800.

IV. Analysis Approach

Simulation data from the high-fidelity numerical method is collected for 16 rotor revolutions starting at
the time step corresponding to the beginning of the 31st rotor revolution, with a temporal resolution based
on a time step corresponding to 2◦ of revolution. This results in a total of 2,880 temporal samples. The
spatial samples are taken from two-dimensional cross-wake planes at downstream stations shown in Figure 3,
where D denotes rotor diameter. Each plane has a spatial resolution of 400 by 400, which corresponds to a
dimensional resolution of 40 cm by 40 cm.

The CFD simulation results are output in the Cartesian coordinate system. Since the simulation does
not contain a tower or nacelle, and the inflow is uniform and perpendicular to the rotor plane, the flow
is axisymmetric. Since the flow is axisymmetric, a coordinate transformation is applied to the simulation
results, and analysis is applied in the polar coordinate system. In the polar reference frame, the velocity
vector is composed of axial (denoted U), radial (denoted V), azimuthal (denoted W) components. All results
and analysis presented herein are in the polar coordinate system.
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V. Results

Figure 3 demonstrates instantaneous axial momentum at multiple downstream stations as a function of
rotor diameter (D). Qualitatively, the wake deficit structure is highly regular in the near-wake region starting
at the turbine to two rotor diameters (2D) downstream. At station 3D, the wake begins to break down and
transition to turbulence as shown in Figure 4, where an instantaneous isocontour of velocity magnitude of 8.5
m/s colored by density demonstrates the tip vortex structure evolution. Between stations 2D and 3D, vortex
merging and hopping occur implying instability of the vortex structures. Figure 5 shows an instantaneous
flow visualization of the normalized absolute tangential velocity wake structure.

Figure 3. Instantaneous axial momentum at multiple downstream positions of the NREL WindPACT-1.5MW wind
turbine.

Figure 4. Instantaneous isocontour of the velocity magnitude of 8.5 m/s colored by density demonstrating the vortex
structure evolution of the NREL WindPACT-1.5MW wind turbine.

Figure 5. Instantaneous normalized absolute tangential flow velocity demonstrating the wake propagation downstream,
annotated by rotor diameter lengths (D).

Figure 6 shows the instantaneous polar velocity components: axial (U), radial (V), and azimuthal (W).
The figure shows the flow structures as a function of downstream wake position. The radial velocity is highest
near the blade tip regions, whereas the azimuthal velocity is uniformly distributed from the root region out
to the blade tip indicating the flow axial induction. Figure 7 demonstrates the time-averaged axial velocity
at station x/D = 0.5. The temporal averaging occurred over 16 rotor revolutions of data. The wake is
bordered by a sharp transition zone distinguishable by a thin annular area with steep velocity gradient, the
shear region. Velocities in the center of the wake are slightly higher since no hub is modeled, and the overall
shape of the wake is symmetric, as the turbine tower is also not modeled and the inflow velocity is uniform.
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Figure 6. Instantaneous axial (U), radial (V ), and azimuthal (W ) velocity components at downstream wake positions:
0.5, 1.0, 2.0, and 3.0 rotor diameters (D).
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Figure 7. Temporally averaged axial ve-
locity at x/D= 0.5 over 16 rotor revolu-
tions.

The axial velocity component is determined by a significant ve-
locity deficit caused by the turbine, which gradually recovers to the
incoming wind velocity by moving downstream as demonstrated in
Figure 8(a). The wake recovery, which is strongly influenced by
turbine performance30 and the incoming turbulent flow,55 is an im-
portant feature for the estimation of the turbine separation distance
within a wind farm. The largest velocity deficit is found at the blade
tip, r/D = 0.5, where more energy is captured from the flow.30 Fur-
ther downstream, this region moves gradually towards the center of
the wake. A general radial velocity component near the wake center
is observed, which is in agreement with measurements by Medici.56

However, as seen in Figure 8(b), found by Medici56 as well,
a radial velocity component emerges from the center out to the
freestream, which is caused by the centrifugal force applied to the
flow in the rotor plane. The radial velocity component reverses towards the center approximately at x/D =
2.0 due to the entrainment from the freestream velocity to the wake. A significant peak of the azimuthal
velocity is detected for radial positions r/D = 0.1 shown in Figure 8(c), which is related to the rotational ve-
locity induced by a vorticity structure created in the blade root region. The azimuthal velocity diffuses very
slowly as it moves downstream. A feathering is observed for the azimuthal velocity at the r/D = 0.5, influ-
enced by the presence of the tip vortices, which gradually diffuse at downstream distances of approximately
x/D = 4.0.
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Figure 8. Time-averaged wake velocity profiles normalized by the freestream velocity at different downstream locations.
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V.A. Results: Blade

In this section, first-order statistics are analyzed at the wind turbine blade region. Figure 9 demonstrates
time history of the calculated dimensional power and thrust for the WindPACT-1.5MW wind turbine. A
lower-fidelity model NREL FAST,57 which couples in an actuator line method, predicts 1.575 megawatts
of power and 221,700 Newtons of thrust. The current work predicts the power to be approximately 1.447
megawatts and 212,400 Newtons of thrust.
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Figure 9. Power and thrust prediction of the WindPACT-1.5MW wind turbine.

Figure 10 indicates the measurement stations used for blade loadings and coefficient of pressure measure-
ments, which also illustrates the blade geometry. Figure 11 shows the normal (Fn), radial (Fr), tangential
(Fθ) loading forces on the blade as a function of normalized radial position. The radial blade forcing is
significantly smaller in magnitude than the azimuthal and normal forces. The profile of the radial force
transitions from a negative force to a positive force while traversing the first third of the blade radius. As
seen in Figure 10, the second station at r/R = 0.13 is positioned on transitioning geometry resulting in a
spike in the radial force. The azimuthal force quickly ascends to a plateau from 20% to 90% of the blade
radius then quickly falls off. Lastly, the normal blade loading linearly grows as a function of radius and then
sharply falls resulting from the generated blade tip vortex. Note that the maximum normal axial force is
approximately 8x the maximum azimuthal force and is 80x larger than the maximum radial force.

Figure 12 shows the computed pressure coefficient on the blade surface, and Figure 13 shows the individual
station measurements. The sectional coefficient of pressure (Cp) is calculated as follows:

Cp =
p− p∞

1
2ρ∞

(
U2
∞ + (rω)

2
) (1)

where ω is the rotation speed, and r is the sectional radius. The Cp plots indicate well-behaved values along
the span of the blade. However, as seen in Figures 12(b) and 13, the pressure side of the wind turbine blade
has a region spanning the entire blade where the Cp is negative just behind the leading edge indicating
a favorable pressure gradient then transitioning into an adverse pressure gradient. Figure 14 illustrates a
blade-tip view of the pressure gradients.

7 of 22

American Institute of Aeronautics and Astronautics



(a) suction side

(b) leading edge

(c) pressure side

Figure 10. Measurement locations for loading forces and coefficient of pressure.

(a) Fn (b) Fr (c) Fθ
Figure 11. Normal [axial] (Fn), radial (Fr), and azimuthal (Fθ) force components distributed along the normalized
blade radius.

(a) Cp suction side

(b) Cp pressure side

Figure 12. Coefficient of pressure on the blade surface. Pressure gradients are present on the pressure side along the
span of the wind turbine blade.
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(a) r/R=0.07 (b) r/R=0.13 (c) r/R=0.20 (d) r/R=0.26 (e) r/R=0.33

(f) r/R=0.39 (g) r/R=0.46 (h) r/R=0.53 (i) r/R=0.59 (j) r/R=0.66

(k) r/R=0.72 (l) r/R=0.79 (m) r/R=0.86 (n) r/R=0.92 (o) r/R=0.99

Figure 13. Coefficient of pressure at stations along the blade normalized blade radius.

Figure 14. Blade tip view of coefficient of pressure showing pressure gradients spanning the length of the wind turbine
blade.
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V.B. Results: Reynolds Stress Analysis

In this section,the wake is analyzed in terms of turbulence and Reynolds stresses. First, we denote the
instantaneous velocity as U(t) at t = tk and the temporally-averaged velocity as u. The Reynolds stresses
are averaged temporally over n = 2, 880 time instances corresponding to 16 rotor revolutions. The Reynolds
stresses are calculated as follows:

uiuj =

n∑
k=1

(Ui(tk)− ui) (Uj(tk)− uj)

n
, ui = {u, v, w} (2)

The normal Reynolds stress uu/U2
∞, plotted in Figure 15(a), has an increased intensity in the near-wake,

representing the mechanically-produced turbulence due to the presence of the wake velocity deficit. This
wake turbulent energy gradually dissipates propagating downstream, while the wake diffuses and increases
its transverse width. In addition, velocity fluctuations associated with the tip vortices are also detected
from the normal stress for locations x/D = 0.5 and 1.0. However, a small increase occurs in the normalized
axial stress at x/D = 4.0 and 5.0, which can be due to the divergence of the second-order moments at those
locations.

Conversely, in Figure 15(b), the normalized stress connected to the azimuthal velocity component,
ww/U2

∞, corresponding to the outboard of the blade increases downstream. However, the azimuthal normal
stress associated with the blade root drops very rapidly in the near wake. Lastly, Figure 15(c) shows the
Reynolds shear stress, uw/U2

∞. This is an important quantity as it is related to the vertical transport of
momentum, with negative values of shear indicating entrainment of the freestream flow momentum into the
wake, which directly relates to the re-energizing process of the flow.
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Figure 15. Normalized Reynolds stresses at multiple downstream locations.
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V.C. Results: Proper Orthogonal Decomposition Analysis

Proper Orthogonal Decomposition (POD) is a common mathematical analysis technique known by other
names from other fields (e.g. Principal Component Analysis) and is closely related to singular value de-
composition. It is used as a statistical procedure to extract coherent structures within various flows. POD
does this by constructing an eigenvector basis to build a modal decomposition from an ensemble of data
signals. An eigenvalue problem is solved using a correlation matrix constructed from an autocovariance of
the temporal ensemble of velocity snapshots in time, which results in a spatial autocovariance matrix.

First consider a collection of instantaneous flow field snapshots U(x, t) sampled at m spatial locations
and n time instances. The fluctuating (u′) and mean (u) velocity fields are calculated from these n instances
as follows:

u′(x, tj) = U(x, tj)− u(x), where u(x) =
1

n

n∑
j=1

U(x, tj) (3)

The fluctuating velocity matrix M ∈ R(m×n) is constructed as follows:

Mij = u′(xi, tj), i = 1, . . . ,m, j = 1, . . . , n (4)

The traditional POD method formulates the correlation matrix C̃ = 1
nMMT ∈ R(m×m). From this, an

eigenvalue problem is solved as follows:
C̃φ = φλ (5)

where φ = φl(xi) ∈ R(m×m) is a square matrix whose columns (index l) are the eigenvectors, and λ ∈ R(m×m)

is a diagonal matrix containing the eigenvalues λll. φ = φl(xi) are known as the POD modes. The eigenvalues
represent the relative kinetic energy in each POD mode, which represent the dominant flow structures. The
eigenvalues λll are ordered such that:

λ1 > λ2 > . . . > λm ≥ 0 (6)

The instantaneous fluctuating velocity field can be represented as a series expansion of POD mode and POD
coefficient products. The POD time-varying coefficients are calculated by projecting the velocity fluctuations
onto the POD modes as follows:

al(tj) =
1

m

m∑
i=1

φl(xi) · u′(xi, tj) (7)

Finally, the instantaneous fluctuating velocity can be reconstructed as follows:

u′(xi, tj) =

m∑
l=1

al(tj) · φl(xi) (8)

Note that for large data ensembles that have more temporal samples than spatial samples, such as in
experimental studies, the traditional POD method is advantageous as the correlation matrix is size m×m,
which is smaller than n × n, thus solving the eigenvalue problem in Equation 5 is smaller and easier.
However, in computational data, there are generally more spatial samples than temporal samples. Thus, it
is advantageous to use the snapshot POD method, which was introduced in 1987 by Sirovich.33 Snapshot
POD, alternatively, solves the eigenvalue problem using the correlation matrix C = 1

nM
TM ∈ R(n×n).

Recall, the singular value decomposition (SVD) of a matrix M ∈ R(m×n): M = UΣV T , where U ∈ R(m×m)

is a unitary matrix, i.e. UTU = UUT = I, Σ ∈ R(m×n) is a diagonal matrix composed of the singular values
of M , and V T ∈ R(n×n) is also a unitary matrix. The matrix U is the set of the orthonormal eigenvectors
of MMT , and V is the set of orthornormal eigenvectors of MTM . Further, the diagonal entries Σ are the
square roots of the non-zero eigenvalues of both MMT and MTM . Thus, the original POD method solves
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for the matrix U and the square values of the matrix Σ. Alternatively, using the snapshot POD method,
one can solve for Σ and V , then solve for the matrix U by the following procedure:

M = UΣV T

MV = UΣV TV right multiply V

MV = UΣ V unitary

MV Σ−1 = UΣΣ−1 right multiply Σ−1

MV Σ−1 = U (9)

Note that Σ−1 is nonconventional notation as the matrix is non-square. However, Σ is a diagonal matrix
with non-zero eigenvalues for the first min(m,n) entries, thus, reconstruction of the first min(m,n) columns
of the U is as follows:

U l =
1√
λll
MV l (10)

Through this process, we are able to solve the eigenproblem of size min(m2, n2) making high spatial resolution
simulations tractable for POD using a small number of time samples. Once the eigenvalues and eigenvectors
are reconstructed through Equation 10, the process of reconstructing the POD coefficients and velocity
fluctuations is analogous to the procedure outlined in Equations 7 and 8.

V.C.1. Results and Analysis

Snapshot POD is applied to the WindPACT-1.5MW wind turbine simulation for an ensemble of data com-
posed of 16 rotor revolutions. The autocovariance matrix is constructed using scalar velocity components,
i.e. POD is applied to a single velocity component at a time. The spatial samples are taken from the
two-dimensional planes at downstream stations at x/D = 0.5, 1.0, 2.0, and 3.0, as shown in Figures 3.

The POD mode energy is shown in Figure 16 for axial, radial, and azimuthal fluctuating velocity compo-
nents at multiple downstream stations. The red bars correspond to the mode energy with the mode number
as the abscissae. The blue curve represents the accumulating energy as the mode energies are summed. For
example, the first six modes for the axial fluctuating velocity at station x/D = 0.5 contain approximately 90%
of the fluctuation total energy. The purple dashed line represents the total kinetic energy of the fluctuating
velocity; one can compare the kinetic energy of the fluctuating velocity components by reading across each
row. The axial fluctuating velocity at x/D = 0.5 has approximately half the energy as the radial fluctuation
velocity, but nearly three times the energy of the azimuthal fluctuating velocity.

From Figure 16, the axial and radial fluctuating mode energies are low dimensional in the near-wake
region up to station x/D = 2.0 as most energy is contained in the first six modes. Further, strong mode
pairs exist (modes 1 and 2, modes 3 and 4) indicating strong flow structure coupling. The azimuthal mode
energy is much more distributed as only 70% of the total energy is accounted for in the first 20 modes
for station x/D = 0.5 and less than 30% for station x/D = 3.0. At the beginning of the results section,
a qualitative observation of the wake appearing to break down in regions between x/D = 2.0 and 3.0 was
stated. This observation is confirmed, quantitatively, through the mode energy evolution for all fluctuating
velocity components; the mode energy has a significant redistribution from lower modes to higher modes
between stations x/D = 2.0 and 3.0. Further, the total energy in the radial component starts very high
in comparison to the azimuthal component but loses a third of its energy as the wake moves downstream
where a significant increase in the azimuthal mode energy at station 3.0D occurs. This highlights not only a
redistribution of energy within its own modes but to other fluctuating velocity components. This confirms
the results from the Reynolds stress analysis demonstrating the growth of the azimuthal stress shown in
Figure 15(b).

Figure 17 illustrates the POD time-varying coefficients. The amplitudes of the time-varying coefficients
demonstrate the mode energy, and the phases demonstrate the pairing. As seen in all fluctuation velocities,
pairings between modes 1 and 2 and modes 3 and 4 are present as their respective amplitudes are approx-
imately the same with an approximate 90◦ phase shift. To further demonstrate this pairing for the axial
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fluctuating velocity, Figure 18 shows modes a2 and a4 plotted as functions of modes a1 and a3, respectively,
at stations x/D = 0.5 and 2.0. As the wake moves downstream, we observe this tight coupling between
modes begin to deteriorate. This is especially true from station x/D = 2.0 to 3.0. More acutely, the axial
time-varying coefficients show an early decoupling in mode pair 3 and 4 at station 2.0D. This decoupling
may introduce the energy instability allowing vortex interactions, such as vortex pairing and hopping.

Figure 19 shows a time series of mode 1 for the axial fluctuating velocity at station 0.5D which shows
the largest energy containing structure over a period of one rotor revolution. The illustration shows the
oscillation of mode 1 changing between positive and negative values at a 60◦ phase frequency. As a tip
vortex passes through the x/D = 0.5 plane, the time-varying coefficient oscillates one full period over 120◦

of rotation. Thus, for three blades, there are three full periods passing through the wake station plane.
Next, the first 10 POD mode structures at stations 0.5D, 2.0D, and 3.0D are shown in Figures 20, 21,

and 22, respectively. Similar mode pairing structures appear in the near-wake region for the axial and radial
velocity fluctuations. Most of the structured content is found in the first four modes as asserted by the mode
energies. Mode 3 at station 2.0D for the axial component begins to exhibit structural differences compared
to its mode pair, mode 4, whereas the radial component still shows strong mode correlation for modes 3
and 4. Significant structure changes emerge at station 3.0D after the initial stages of wake breakdown. The
strong asymmetry between axial modes 1 and 2 show a transfer of energy. Particularly, mode 1 of the radial
component shows strong negative radial velocity, which indicates strong entrainment from the freestream
velocity. More structures appear in higher modes for all three velocity components highlighting that the flow
has taken on a higher dimensionality. However, since the wake has begun the transition from near-wake to
mid-wake incorporating more turbulent effects, more data is required to assert convergence of the statistics.

VI. Conclusions and Future Work

High-fidelity simulation enables more in-depth capabilities for wind turbine wake analysis. Particularly,
blade-resolved simulations allow for the study of the impact of complex aerodynamics on wake characteristics
through a first-principles viewpoint. Starting at the wind turbine blade, measurement of the aerodynamic
forces and computed pressure coefficients provided insight into the overall wind turbine performance and
the evolution of the wake. Reynolds stress analysis highlighted the turbulence quantities responsible for the
re-energizing process of the flow in the wake, and Proper Orthogonal Decomposition provided a quantitative
and simplified view of the dominant flow structures in the wake with relative energy content. Further, it
provided quantitative evidence of the vortex stability breakdown and the wake entrainment process.

Future work will include a computational study of a small-scale wind turbine design matching the non-
dimensional force distributions along the wind turbine blade of the NREL WindPACT-1.5MW wind turbine.
This will be used to compare and contrast wake characteristics and further explore analysis techniques
appropriate for characterizing the relationship of the blade force distributions to wake statistics. POD
analysis will be extended to vector quantities for the construction of the autocovariance matrix, relating the
cross-velocity component flow structures. Additionally, three-dimensional data will be analyzed using POD
to quantify the dominant three-dimensional flow structures.
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Figure 16. POD mode energies for axial (u′), radial (v′), and azimuthal (w′) fluctuation velocities at downstream wake
positions.

14 of 22

American Institute of Aeronautics and Astronautics
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Figure 17. POD time-varying coefficients for u′, v′, and w′ fluctuation velocities at downstream wake positions.

15 of 22

American Institute of Aeronautics and Astronautics



(a) x/D = 0.5

(b) x/D = 2.0

Figure 18. Axial fluctuation velocity time-varying coefficient pairings between modes 1 & 2 and modes 3 & 4.
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Time Series of Axial Fluctuation Mode 1, x/D = 0.5D

(a) 10◦ (b) 20◦ (c) 30◦ (d) 40◦ (e) 50◦ (f) 60◦

(a) 70◦ (b) 80◦ (c) 90◦ (d) 100◦ (e) 110◦ (f) 120◦

(a) 130◦ (b) 140◦ (c) 150◦ (d) 160◦ (e) 170◦ (f) 180◦

(a) 190◦ (b) 200◦ (c) 210◦ (d) 220◦ (e) 230◦ (f) 240◦

(a) 250◦ (b) 260◦ (c) 270◦ (d) 280◦ (e) 290◦ (f) 300◦

(a) 310◦ (b) 320◦ (c) 330◦ (d) 340◦ (e) 350◦ (f) 360◦

Figure 19. Time series of POD mode 1 for u′ at x/D = 0.5D over the period of one rotor revolution.

17 of 22

American Institute of Aeronautics and Astronautics



x/D = 0.5D
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(i) mode 9 (j) mode 10

(a) mode 1 (b) mode 2

(c) mode 3 (d) mode 4

(e) mode 5 (f) mode 6

(g) mode 7 (h) mode 8

(i) mode 9 (j) mode 10

Figure 20. POD modal decomposition and instantaneous flow velocities (bottom) at downstream position x/D = 0.5D.
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x/D = 2.0D
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Figure 21. POD modal decomposition and instantaneous flow velocities (bottom) at downstream position x/D = 2.0D.
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x/D = 3.0D
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Figure 22. POD modal decomposition and instantaneous flow velocities (bottom) at downstream position x/D = 3.0D.
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