An Adaptive Explicit 3D Discontinuous Galerkin
Solver for Unsteady Problems

Andrew C. Kirby * Dimitri J. Mavriplis '
Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071, USA
Andrew M. Wissink *

US Army Aviation Development Directorate - AFDD (AMRDEC), Moffett Field, CA 94035, USA

A block-structured Cartesian discontinuous Galerkin solver is developed for and imple-
mented into the open source SAMRALI structured adaptive mesh refinement framework.
The focus of the work is optimizing the computational efficiency of the block solver for the
adaptive mesh refinement framework. A collocation scheme is implemented in a Carte-
sian setting for maximal efficiency. The discontinuous Galerkin solver is demonstrated in
the SAMRALI framework and tested using an isolated vortex and comparing to an exact
solution.

I. Introduction

The use of Cartesian grids in computational fluid dynamics (CFD) provides well known advantages
in terms of computational efficiency and accuracy. Cartesian meshes represent the simplest grid structure
which can be represented extremely compactly, thus minimizing solver memory footprints, optimizing parallel
efficiency, and simplifying both adaptive mesh refinement implementations™? and overset mesh search and
interpolation tasks2“ The principal drawback of Cartesian mesh approaches lies in the difficulties of dealing
with non-simple geometries. Various approaches for dealing with complex geometries have been developed
for use with Cartesian meshes including immersed boundary methods 2% cut cell approaches 210 and
overlapping dual mesh paradigms where a body fitted mesh is used in near-body regions and a Cartesian
mesh is used in off-body regions 4L

The development of high-order accurate discretizations for computational aerodynamics has been pur-
sued vigorously over the last decade and substantial advances have been demonstrated for continuous and
discontinuous Galerkin (DG) methods A2 ESIHISMIGIAISIAEZ0 However, the use of high-order methods for
computational aerodynamics remains a research topic largely due to the poor robustness and large com-
putational expense of these methods! The approach taken in this work is to capitalize on the inherent
advantages of Cartesian meshes to enable the development of an efficient and highly accurate discontinuous
Galerkin solver specialized for Cartesian meshes. The basic approach consists of limiting the discretization
to a collocation approach using a tensor-product basis formulation on hexahedral elements, which is well
known to provide large gains in efficiency over the general element modal formulation 2223 Although nu-
merous examples of high-order tensor-product implementations on structured hexahedral meshes have been
described previously, 222324 the current work seeks to obtain optimal solution accuracy and performance by
further limiting the discretization to Cartesian meshes.

The use of a discontinuous Galerkin discretization offers advantages over traditional finite-difference or
finite-volume discretizations in terms of accuracy per degree of freedom, which in turn enables the use of
coarser grids, thus minimizing the overheads associated with managing the dynamic adaptive mesh refine-
ment process. Additionally, the nearest neighbor stencil of the DG discretization simplifies the treatment
of fringe data in transition regions between coarse and fine mesh blocks. Finally, using a variable order

*Doctoral Student, AIAA Student Member
TProfessor, AIAA Associate Fellow
T Aerospace Engineer, ATAA Member

1 of 22

American Institute of Aeronautics and Astronautics

implementation, we aim to enable combined h (mesh refinement) and p (order enrichment) adaptive meth-
ods, which have been shown to be optimal for error reduction2¥ Our approach for dealing with complex
geometries is based on the dual mesh paradigm, as depicted in Figure [T} where an unstructured body fitted
mesh is used in the near body regions and the Cartesian DG solver is used in off-body regions. Although
this paper is restricted to the discussion of the off-body Cartesian mesh DG solver, previous work has shown
this approach to be feasible for both low order and high-order discretizations28

This paper begins by introducing the governing equations and their spatial discretization via the dis-
continuous Galerkin method. We build the block-solver framework and demonstrate validated results for
three model problems: Ringleb flow, Taylor-Green vortex, and diagonally lid-driven cavity flow. Following
the validation results, we present the block-solver in a self-contained parallel framework. The second half of
the paper introduces the structured adaptive solver framework and presents results of two model problems:
isentropic vortex convection and flow over a cube. The paper concludes with a summary of the advantages
of moving to a SAMR setting and a discussion on future work.

Figure 1. Dual-mesh, dual-solver paradigm in HELIOS S

II. Governing Equations

The Navier-Stokes equations govern the dynamics of compressible fluids and can be written as:
OUp, OF

where they represent the conservation of mass, momentum, and energy. The solution vector U and flux F'
are defined as:

P pu pv pw
pu pu® + P — 11 puv — T12 pUW — T13

U=9 pv ¢, F'= pUV — Ta1 pv? + P — 759 pUW — Ta3 (2)
pw PpUW — T37 PpVW — T32 pw2+P—7'33
pE pull —Tu; +q1 pvH — mu; + g2 pwH — 7355 + g3

where p is the density, u,v,w are the velocity components in each spatial coordinate direction, P is the
pressure, F is total internal energy, H = FE + L is the total enthalpy, 7 is the viscous stress tensor, and ¢
is the heat flux. The viscosity is a function of the temperature given by the Sutherland’s formula. These
equations are closed using the ideal gas equation of state:

P 1
pE = po + §p(u2 +v? + w?)

where v = 1.4 is the ratio of specific heats. Hereinafter, Einstein notation is used where subscripts are not
declared otherwise and the indices of m and n vary over the number of flow variables. Indices ¢ and j have
a range of 1 to 3.

2 of 22

American Institute of Aeronautics and Astronautics

III. Spatial Discretization

General finite-element methods scale per degree of freedom as O(N?) where N = p + 1 is the order of
accuracy, p is the polynomial degree, and d is the spatial dimension. Utilizing tensor-product basis functions
and collocation of integration and interpolation points, the cost per degree of freedom is estimated as O(N)
by reference?¥ This makes the cost comparable to compact finite difference methods. In this section, the
DG finite-element method used to solve the Navier-Stokes equations is described.

The computational domain is partitioned into a block-structured Cartesian collection of hexahedra Ty,
of uniform element size H, into an ensemble of non-overlapping elements, such that Q = UkeTH Qp, where
Q. refers to the volume of an element k with k € Tg.

III.A. Discontinuous Galerkin Formulation

The discontinuous Galerkin discretization proceeds by formulating a weak statement of the governing equa-
tions. To obtain the weak formulation, multiply the equation by a set of test functions ¥, with a maximum
polynomial order of p. Note that the order of accuracy is N = p+ 1. Proceed by integrating over all elements

k:
oU,, OFn;

U — dQ, =0 3
/Qk (8t+8xi> k ®)

Integrating equation by parts the total residual R,, is defined as:

ouU, ov

RmZ/ U—"d0 — —Fmiko—l—/\PannidF:O (4)

o, Ot o, 0T r

The residual now contains integrals over faces I' and special treatment is needed for the fluxes in these
terms. The advective fluxes F* are calculated using Godunov’s scheme or an approximate Riemann solver.
Implemented schemes include Lax-Friedrichs?” and Roe/2® while the diffusive fluxes are handled using a
symmetric interior penalty (SIP) method2%3% This work is focused on subsonic flows without the existence
of shocks, thus the exact solution exists in C°°. Therefore, we do not expect the order of convergence to be
limited by solution irregularity.

ITI.B. Reference Element Mapping

We wish to transform physical coordinates, X = (z,y,2)", to reference coordinates, & = (¢ 1,52,53)T. The

reference element F is the set of points spanned by Ewhere ¢ e [-1,1], ie. E = [—1,1]3. Since our
domain discretization is Cartesian, the transformation between the physical coordinates and the reference
coordinates is a pure dilation. Thus the integral of a general function G in physical space transformed to
the reference space is given as

e _ _ 1 ¢2 ¢3 didlﬁ 13¢29¢3 &) &
[o= [[[ewuaam= [[] c@eee) g = [a@a
o)

where do dy d
" T e 18 0

Due to the prescribed mesh framework, J is a precomputed constant.

ITII.C. Solution and Flux Approximation

— —

The solution of each element is approximated by Uy, (§) = amsPs(€) with degrees of freedom (DOF) a,,s. The
index s runs over the total number of basis functions. We develop the basis functions to be a tensor-product
of one-dimensional Lagrange interpolating polynomials of degree N in each spatial direction:

U, = Wi(€) = L)L (E)(EY), (7)
The one-dimensional Lagrange polynomials are given as:
N
€-&) .
e = 11 77— i=0-.N (8)
0wy (& &)
3 of B2

American Institute of Aeronautics and Astronautics

possessing the Lagrange property:

(&) =0y, 4,j=0,--,N (9)
for a collection of points &; in the one-dimensional reference space [—1, 1]. By choosing the tensor-product of
one-dimensional Lagrange polynomials as the basis, we develop a nodal finite-element method provided by
the property in equation @[) The algorithm benefits computationally since the degrees of freedom a,, s are the
solution values U, at the collection of points. The points &; are chosen to be the Gauss-Legendre quadrature
points. By choosing the Gauss-Legendre quadrature points for the interpolation points, the DOF are equal
to the solution values. Therefore there is no need to perform solution projections to the integration points,
hence increasing performance. Additionally, choosing the Gauss-Legendre points yields more accuracy and
efficiency in the discretization.?!! Gauss-Legendre quadrature is can integrate all polynomials up to degree
2N — 1 exactly in comparison to Gauss-Lobatto quadrature which can integrate polynomials up to 2N — 3
exactly32 We make note that by changing from a general basis to a tensor-product basis, we can rewrite
the index s using three indices uwvw that traverse each coordinate direction, i.e. Upms = Umuvw. The
flux vector Fj,; has three disjoint flux components, namely Fj,1, Fi,2, and F,35. When interpolating these
functions, we evaluate these non-linear functions discretely with the Gauss-Legendre points &; chosen above
resulting in leklls(g),ﬁ'mg\lls(g), and Fm3\115(§). However, there is a drawback to evaluating these non-
linear fluxes at the interpolation points. Since we have non-linear fluxes, this can introduce truncation errors
to the orthogonal polynomial infinite series representation and incur aliasing to the higher-order terms:=3
To alleviate the problem of polynomial aliasing, it has been suggested for the compressible Navier-Stokes
equations to use 2N points for numerical integration 2239 By over-integrating, we trade the computational
efficiency of collocation for numerical stability and accuracy.

ITII.D. Time Derivative Integral

This subsection describes the integration of the first term of the residual in equation . First noting that
the mesh discretization is time-independent, we may factor the time derivative out of the integral. Selecting
the basis function to be the same as the test function by the Galerkin approach,¥ = W, ;.:

) Y N -

Replacing the continuous integration with numerical quadrature, further reducing by collocation and finally
using the Lagrange property in equation @:

a g 8[/ muvw aL ms
— U,, v = W W —————— = Wi W ————— 11
pr /E P JdE = Jwwjwy y Jw;wjwy, 5t (11)

where w is the quadrature weight. We now define the mass matrix M and the inverse mass matrix M~! as:
M = M,;jk = szijk s M~ = (Jwiijk)_l (12)

Equation simplified becomes:
u?l
ot
Noting that our Jacobian J is linear and the mesh contains only linear hexahedra, Gauss quadrature using
the Gauss-Legendre points integrates the time derivative term exactly.

(13)

ITI.E. Volume Integral

This subsection describes the integration of the second term of the residual in equation . The volume
integral is a disjoint sum of three flux integrals:

ov o ov ov
—F,,:dQ, = —F},,1dQ2 Jr/ —F},,2dQ2 +/ —F},3dQ2 14
/Qk og, . midh /Q o, Lrdint [g Fmadle | o Fmadh (14)

To do the general analysis of the fluxes, we only need to do the analysis on one of the fluxes in equation
(14) as the rest are similar. Setting the test function equal to the basis function and replacing the integral

4 of 22

American Institute of Aeronautics and Astronautics

by Gauss quadrature:

a\p - -0V -
[e Fd®u /E P .(§) e € (15)

01, (E)
&

Noting that 1,(£1) = 6, and taking the derivative of the basis function with respect to one coordinate
removes the Lagrange property in that respective coordinate direction. Thus the surviving terms for the

Fuwvllu(ﬁi)lw (fi)lv(fi)

WAW Wy, (16)

&l-direction derivative are %ég) o’
W1 (E
Pl €)1 (6) 22 oy, a7
231

~ dl;

= F)\,uul (g)‘ 5j,u5kuw)\w,uw1/ (18)
€ egr
~ dl;
= ijkF)\jkl d(g)‘ wWH (19)
£ le=en

Equation can be viewed as a matrix-vector product but taking only a single component per flux. Finally
we rewrite the volume integral as:

_ g (é‘)’)
+ | wiwpFiupe —222 Y .
(Rk T e £=¢; '
~ dlu(f)’)
+ | wiw; Fijy o .
(Jrigv3 dg§ E=¢Ek

III.F. Surface Integral

The surface integral is drastically simplified in the block-structured Cartesian framework. This occurs since
the outward-facing unit normal for the ¢!-direction is n; = (#+1,0,0)7 with analogous expression for the
other reference coordinate directions. We are able to eliminate the other components of the numerical flux
F*. For example, the surface integral at ¢! =1,

" dy dz
/ W nydD = / / (6 = 1R, = 22 a¢%de? (23)
r £ ¢
Evaluating the Lagrange polynomials and numerically integrating, we get:
. dy dz
ijlli(l)ijk?? (24)

The other fluxes are analogous to equation while paying particular attention to the outward-facing
unit normal. In order to evaluate the surface integrals, we need to project the solution to the faces. To
project to the surface points, we do a simple one-dimensional scalar product of the solution coefficients and
the basis functions evaluated at the Gauss-Legendre points. For example, to project to the &' = 1 surface,
Ujr = Uijrli(§ =1). Fig shows the locations of Gauss-Legendre quadrature points in addition to boundary
flux point locations. There is an imagined one-dimensional line of quadrature points for the desired surface
point.

Additional benefits are provided in the Cartesian framework by recalling that the outward-facing unit
normals are single component only varying in sign, thus eliminating the other directional components of the
flux. Specialized flux routines are implemented in each coordinate direction to optimize the total number of
operations.

5 of 22

American Institute of Aeronautics and Astronautics

2 oA
& &
© 0O [m] i [m] O @
O O] O O
O O [, = = >
E1
[m] [m] O [m] [m]
© 0O [m] O [m] O @
& &

Figure 2. Gauss-Legendre quadrature points 0 for N =5 and boundary quadrature points.

IV. Temporal Discretization

From the previous section on numerical discretization, we can combine the volume integral and the surface
integral into a spatial residual, Rx (U). To evolve the equations temporally, we use an explicit time-stepping
scheme. Via the method of lines, the semi-discrete equation of equation is given as:

Ma—U+RX U)=0 (25)
ot

where M is the mass matrix defined previously. Equation is a system of coupled ODEs which is solved
numerically using an explicit time-stepping scheme. Current explicit time-schemes that are implemented
are Forward-Euler and the classical Runge-Kutta four-stage method (RK4)B%37 In this formulation, at
each stage of the explicit scheme, the mass matrix must be inverted. For the collocation DG formulation,
we demonstrated the mass matrix is block-diagonal allowing for easy inversion. We have precomputed
the mass matrix and embedded the components amongst the basis functions while making all possible
cancellations. Additionally, explicit time-marching methods have a maximum stable time-step restricted by
the CFL condition. We compute the time-step under the assumption that the CFL number is constant and
is equal to one. With v as the kinematic viscosity and constants C;, Cs, C3 which are found heuristically,

we compute the time-step asis
h h? h

dt = in|C————,C0—,C3— 26
mm(0T+ e) 30’1/) (26)
ho— ml;l((dx,;i;;l, gz) (27)

p+1)"

1)2
o = (b +1) (28)

min (dz, dy, dz)

V. Block Solver Results

In this section, we validate the accuracy of the developed DG solver and examine computational per-
formance. Three model problems are used to demonstrate these properties. A mesh resolution study is
performed using the Ringleb flow problem. The second problem is the Taylor-Green vortex 2249 The third
problem is a three-dimensional, diagonally lid-driven cavity flow. This problem is relatively new in terms of
three-dimensional code validation and was introduced in references #32E3:E4ES

V.A. Mesh Resolution Study: Ringleb Flow

We use an exact solution to verify the accuracy of the finite-element formulation. Ringleb flow is an ex-
act solution to the steady state Euler equations and is solved analytically using the hodograph method 4%
Although it is only a two-dimensional solution, the three-dimensional equations can be verified by setting

6 of 22

American Institute of Aeronautics and Astronautics

the momentum in the third dimension to zero. Characteristic boundary conditions are used in the x and y
directions and an inviscid wall boundary condition is used in the z-direction. The domain is a [1, 1] square
discretized with a hexahedral mesh. Various meshes ranging from 1 x 1 x 1 to 40 x 40 x 1 are used for
different solution orders. The flow is initialized using the exact solution and then the residual is driven to
machine precision.

The errors in a finite-element formulation should decrease asymptotically following the power law ChP+!,
where C' is a constant, h is the mesh size, and p is the polynomial degree. By comparing the analytic
solution to the numerical solution the error can be measured. The error is measured using an L., norm for
p=1,2,4,6,9 at all mesh resolutions. The L, error versus mesh size h is plotted in Fig[3] We see from the
plot that we get the desired design accuracy noting that at p = 9, the L., error is near machine precision
thus giving a slight degradation in the slope of the error.

103_ P=1,5|Dpe=1.98 - 10‘3
P=2, slope = 3.06
P=4, slope = 4.91
) P=6, slope = 7.02)
10° P=9, slope =9.26] 10”
107 |- —107
1]
[=]
E
1]
;s 107 —10°®
-
10—11 | . 10—11
1 0-13 - 1 0-13
-15 [| 1 1 [B A | -15
10 107 " 10° 10

Figure 3. Ringleb flow: L., error vs. mesh size.

V.B. Taylor-Green Vortex

The Taylor-Green vortex flow is simulated using the compressible Navier-Stokes equations at My = 0.1. The
flow is solved on an isotropic domain which spans [—wL,wL] in each coordinate direction where L is the
characteristic length. The initial conditions are given by

u = Vpsin(x/L)cos(y/L)cos(z/L)
v = =V cos(z/L)sin(y/L)cos(z/L)
w = 0

1

= pVi|—=
p PoVo yngL

1

6 (cos(2z) + sin(2y)) (cos(2z) + 2)}

where u, v and w are the components of the velocity in the z-, y- and z-directions, p is the pressure and
p is the density. The flow is initialized to be isothermal (% = p—z = RTy). The initial flow is laminar and

p
subsequently transitions to turbulence, with the creation of small scales, followed by a decay phase similar

to decaying homogeneous turbulence. The domain contains no boundary conditions as the problem is fully

7 of 221

American Institute of Aeronautics and Astronautics

periodic. Fig shows the temporal evolution of the kinetic energy dissipation rate —dd% for the Taylor-

Green vortex problem computed at My = 0.1, Pr = 0.71, Re = poVol 1600, and 256 degrees of freedom in
each coordinate direction with comparison to an incompressible spectral code with 512 degrees of freedom
in each coordinate direction* The temporal evolution of the kinetic energy integrated over the domain 2
is calculated as:

Ey=— [p—dQ (29)

poft Jo o 2

As the order of accuracy increases, the discontinuous Galerkin solver dissipation solution tends towards
the incompressible spectral code. The DG scheme becomes less dissipative with higher-order basis functions
resulting in the solver’s ability to more accurately match the spectral solver results. Reference?? demonstrates
similar dissipation curves with an unstructured version of the current approach.

0.014 3
I ——— Spectral - 5127 4
i ——— DG-P=1-128" |
0.012 —— DG-P=3-64" |
——— DG-P=7-32°
001k .
c l]
20008 .
= []
2 i 1
? L i
£ 0.006 - _
a
0.004 |-
0.002 -
0 1 T T L

Figure 4. Taylor-Green vortex problem at M = 0.1, Re = 1600 computed using 256> degrees of freedom.

For further solver validation, a comparison to a three-dimensional mixed-element DG solver with shock
capturing!® was conducted using the Taylor-Green vortex problem. Results are demonstrated in Fig for
p = 4 and a 643 mesh. Kinetic energy dissipation, enstrophy, and the pressure dilation contribution to
kinetic energy dissipation are plotted in Figl5| respectively. Enstrophy is computed as:

1 W- o

=240 (30)

€= ——
pofl Jo© 2

The pressure dilation contribution term €3 is computed as:

1 _

€3 o) QpV v dS) (31)
As seen from Figl[h] the DG solver developed in this paper gives nearly identical solution curves for
kinetic energy dissipation and enstrophy as the mixed-element, shock-capturing, unstructured discontinuous
Galerkin solver of Reference’® The pressure dilation term e3 curve for CartDG is slightly different than
the unstructured code. Overall, the trends in the €3 plots are very similar and can be attributed to both
codes solving the compressible Navier-Stokes equations and using a symmetric interior penalty method for

the viscous flux calculations.

V.C. Diagonally Lid-Driven Cavity

Recent efforts for an extension to the standard two-dimensional lid-driven cavity benchmark®® have been
proposed by Povitsky??4L42 and Feldman et. al*® The extension is a steady flow driven cavity with the lid
moving at 45° to the cube wall. The z— and z— velocities have equal magnitudes. For this study, we use a
Reynolds number of 1000. Fig@ depicts the lid-driven flow at a diagonal. The physical domain is [0, 1]3.

8 of 22

American Institute of Aeronautics and Astronautics

ion

0.014

0.012

0.01

0.008

Unstructured DG

,' N
' \

— — — CartDG

Unstructured DG

0.0016

0.0014

0.0012

0.001

Unstructured DG

CartDG

z
E_ / §_ oL / l"’0 0008
Booosf / 2 0.0006 |-
a wi U
S 0.0004
0.004 -
0.0002 "l’["’"‘\
0002 —_/ 2r . \..:4\/4[\‘Dﬁ\v‘
o G S) o G o5 20 0.0002 = 10 15 20
Time Time Time
(a) kinetic energy dissipation (b) enstrophy (c) e3

Figure 5. Taylor-Green Vortex comparison between an unstructured DG solver and CartDG: p = 4, 64> mesh at M = 0.1,
Re = 1600.

Figure 6. Cubic lid-driven cavity with lid moving at 45° to the x-axis, Re = 1000.

We present results for this test case in Table [I| using Feldman et. al#3 as a comparison reference. We

note that the solver used in Feldman et. al. is a second-order conservative finite volume scheme with a full
pressure-velocity coupling that solves the incompressible Navier-Stokes equations %45 Their calculations
were performed on 1523 and 200% grids, though we use the latter results for comparison. Our computation
was performed at p = 3 using a grid of 323 mesh. The total degrees of freedom in the case of the present
calculation is just over two million where as the comparative results used eight million DOF. We consider
the flow to be converged when the Lo norm of the spatial residual is less than 1E — 12. The results in
Table [1| demonstrate that the V. and V, velocities towards the boundaries of the computational domain are
similar in magnitude to the comparison reference. In the middle of the domain near (0.5,0.5,0.5), the V,
and V, velocities vary the most compared to the rest of the domain. The V, velocities of the DG solver
and the incompressible finite volume solver agree more on the lower half of the domain in comparison to the
upper half of the domain. Figm shows the streamlines in the center plane (cp). In Fig visualization of the
streamlines of the converged flow observed in the center plane direction and parallel plane (pp) direction are
presented. In Figld] visualization of the contour of velocity magnitude is presented.

V.D. Computational Performance and Parallel Scalability

In this section we examine the computational performance and parallel scalability of the discontinuous
Galerkin solver. The numerical discretization allowed us to make several cost-saving simplifications. Design-
ing a nodal collocation method by choosing the interpolation points to be the same as the integration points
saves two projection calculations. Additionally, the tensor-product basis converts costly projections and
integrations to be one-dimensional products therefore boosting the performance significantly. Combining
these properties with the block-structured Cartesian framework makes the DG implementation competitive
with finite-difference discretizations.

9 of 22

American Institute of Aeronautics and Astronautics

Re = 1000

y V..V, 103 v, 103
Reference® Present Reference?3 Present

1.0 707.1 707.1 0.0 0.0
0.9766 417.8 418.2 5.357 9.735
0.9688 341.3 339.5 8.774 9.804
0.9609 277 .2 276.7 12.47 9.622
0.9531 226.6 227.9 16.03 13.90
0.8516 76.82 76.06 30.13 29.99
0.7344 62.56 61.74 22.28 21.95
0.6172 41.77 40.68 5.439 4.832
0.5 -1.649 -4.218 -34.41 -36.76
0.4531 -31.93 -35.25 -65.23 -68.61
0.2813 -131.0 -130.7 -160.5 -160.1
0.1719 -134.7 -133.0 -138.0 -136.2
0.1016 -143.0 -141.8 -86.68 -85.15
0.0703 -158.8 -157.6 -52.73 -51.60
0.0625 -161.9 -160.2 -43.93 -42.98
0.0547 -162.2 -160.4 -35.40 -34.60
0.0 0.0 0.0 0.0 0.0

Table 1. Velocity components along the vertical center line (0.5, y,0.5) for diagonally lid-driven cavity flow: comparison
between the reference*?(200® grid) and the present (p = 3,32% grid) solution.

The CPU time for a single residual evaluation normalized by the number of degrees of freedom for
a viscous flow is shown in Fig[IQ] for two different CPU architectures. The CPU times are obtained by
performing a simulation of the Taylor-Green vortex problem. The first results in Figa) are computed in
parallel on the NCAR-Wyoming Supercomputer (NWSC) Yellowstone®” using 1,024 cores on Intel Xeon E5-
2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. For reference, the TAU benchmark
for this architecture runs in 8.4s5” The second timing results presented in Figb) are computed in parallel
using eight cores on an Intel Core i7-5960X Haswell-E processor with a clock speed of 3GHz and 4GB per
core memory. The results are obtained using a GNU compiled version of the code. Using the GNU compiler,
the TAU benchmark for this architecture is 5.25s. Hindenlang et. al. report a computational time per
DOF for a single residual evaluation is 2.0E — 06 seconds for their DG spectral-element solver at sixth-order
compared to their in-house compact finite-difference solver at 4.0F — 06 seconds?3 Referencé?? report their
similar unstructured DG solver averaging 7.5F — 07 seconds per DOF for a single residual evaluation which
is comparable to the cost for a residual evaluation using the OVERFLOW finite-difference code for a Navier-
Stokes simulation. Reference?? also report they were able to obtain a computationally cost independent of
order of accuracy up to 16th order through optimized computational kernels and carefully alignment of data
and unit-strided memory operations. Current implementations of CartDG achieve a similar computational
cost to Reference?? at lower orders of accuracy although further optimizations are needed in order to achieve
the computational cost independence of order of accuracy achieved by Reference 22

Aside from the encouraging computational efficiency of the DG method, its main advantages are based
on its parallel scalability. Distributed memory parallelism is realized through the MPI application program
interface (API). The DG algorithm is inherently parallel, since all elements communicate only with their
direct neighbors. Only surface data is needed by neighboring elements thus minimizing the data transfer.
This is an advantage over finite-difference methods, which couple distant neighboring elements and thus
grow the fringe area.

In addition to the finite-element method’s straight-forward parallelization, the block-structured Cartesian
grid framework allows for nearly optimal load balancing by requiring all domain decomposition blocks to be
identical. This method also takes advantage of the Cartesian virtual topology framework in MPI simplifying

10 of 221

American Institute of Aeronautics and Astronautics

(a) flow towards observer (b) flow left to right

Figure 8. Cubic lid-driven cavity flow: streamlines colored by velocity magnitude.

the implementation. The DG algorithm can be split into the two calculations: the volume integral and the
surface integral. The volume integral calculation only depends on element local DOF whereas the surface
integral calculation requires neighboring element data. This fact can help to hide communication latency by
exploiting local element operations and will further reduce the negative influence of data transfer on efficiency.
It is therefore possible to send surface data while simultaneously performing volume data operations.

Parallel scalability results were obtained on Yellowstone? Yellowstone is composed of 72,576 processor
cores. The cores are Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory
with Advanced Vector Extensions (AVX). The strong scalability results are obtained by performing a simula-
tion of the Taylor-Green vortex problem using a 128 x 128 x 128 mesh. This mesh equates to approximately
260 million DOF, 1 billion DOF, and 2 billion DOF for p = 4, 7, and 9, respectively. Strong scaling results
up to 32,768 processors for polynomial degrees of 4, 7, and 9 are shown in Fig[lI] The scaling improves
as the order of accuracy increases. At 32,768 processors, the problem contained 8,000, 32,768, and 64,000
degrees of freedom on each processor for p = 4,7, and 9, respectively.

VI. Structured Adaptive Solver

The overall goal of this work is to capture shed wakes from wind turbines and rotary-wing vehicles
in a multi-solver paradigm. In able to achieve high-order accuracy without using excessive resources, we
have implemented the block-solver CartDG previously discussed into a structured adaptive mesh framework
(SAMR). By working in an adaptive mesh refinement framework, we can focus resolution to areas of increased

11 of P21

American Institute of Aeronautics and Astronautics

(a) flow away from observer (b) flow left to right

Figure 9. Cubic lid-driven cavity flow: velocity magnitude contour of 0.005 colored by y-velocity.

1.3E-08 3E-06
1.25E-06 ERRE ; -
| D
i 7/. 2.5E-06 Pa

1.2E-08
o [y
[] [e]
Q1.15E:06 Q k.06 v e
o 14 -
Q 1]
9 @
o 1.1E06 s
E i§1.5E-06— = o / :
E1 05E-06 > 7‘ : %
& 3] i ril

1E-06 1E-06 \\ /)'
9.5E-07 i "
i kr")/
5E-07
9E-07 L Ll i 1 i
4 5 3 7 8 9 10 11 0 5 10 15 20 25 30 35
Solution Order Solution Order

(a) CartDG performed on 1,024 cores on the NCAR-Wyoming (b) CartDG performed on 8 cores on Intel i7-5960X: TAU
Supcrcomputor TAU Benchmark 8.4s with Intel compiler Benchmark 5.25s with GNU compiler

Figure 10. CPU time for a single residual evaluation per degree of freedom.

12 of B2

American Institute of Aeronautics and Astronautics

35000
30000 |-

25000 |-

I Ideal

20000~ —m—— CarlDG P=4
[—=— CarDGP=7 .
[—=— cCarDGP=9 ,.°
15000 |-

Speedup

10000 F

2,097,152 element mesh

P=4: 262,144,000 DOF

P=7:1,073,741,824 DOF

P=9: 2,097,152,000 DOF

Strong scaling on Yellowstone up to 32,768 cores

1 L L L 1 L L L L 1 L
10000 30000

20000
Number of Cores on Yellowstone

5000 F

Figure 11. Strong scaling for polynomial degrees 4, 7, and 9 on the NCAR-Wyoming Supercomputer.>?

activity, particularly wakes with high vorticity. Particularly working with a SAMR framework, we can
adapt the grid dynamically in a time-dependent manner to resolve unsteady effects with relative ease.
In a parallel compute setting, every time we adapt the mesh, the grid needs to be re-partitioned for load
balancing and parallel communications must be redirected. AMR is simpler in a Cartesian setting giving it an
advantage over unstructured methods in terms of efficiency. The SAMR framework has significant advantages
in frequent, dynamic adaption because of the concise block-structure descriptions allowing for quick re-
gridding procedures.”!' This section discusses the details of the structured adaptive mesh framework and the
interpolation operators needed for transferring data between levels. Previous work in SAMR discontinuous
Galerkin methods using an octree structure have done by Kopera and Giraldo? Our SAMR approach is
patch-based.

VI.A. Structured Adaptive Mesh Refinement Framework

The adaptive solver is built using the open source SAMRAI package from Lawrence Livermore National Lab.
SAMRATI is an objected-oriented C++ library that provides flexible adaptive meshing and data management
for parallel SAMR applications®® The code that couples SAMRAI and CartDG is referred to as SAMCart-
DG. It is comprised of a C++ driver with the block-solver CartDG written in Fortran90. SAMRATI uses a
block-structured grid hierarchy of nested refinement levels. Each level is composed of a union of logically-
rectangular grid regions. On each level the grid spacing is fixed and the ratio of refinement between two
consecutive levels is generally two, although the environment allows for other refinement ratios pending the
construction of appropriate refinement and coarsening operators. The Cartesian grid levels are constructed
from coarsest to finest by first tagging cells for refinement, clustering them into blocks, and refining these
blocks into a new level. SAMRALI performs all grid generation, load balancing, and parallel communications
between blocks. Each level is partitioned into a set of disjoint patches.

The governing equations for each patch on all levels are solved. Each level performs an explicit Runge-
Kutta (RK) stage with a uniform time step. The time step is governed by the finest mesh spacing. At the
beginning of a RK stage, data on the fine patch boundaries are updated by copying data from a neighboring
patch if the resolution is the same or data is interpolated from a coarser level. Then the RK stage is performed
independently on each patch. Next, data from the finer levels are injected into the coarser levels where finer
levels overlap coarser levels via a coarsening operator. All data communications between levels and inter-
level patches are done in parallel using MPI which is managed by SAMRAI After a complete time step and
regridding is requested, cells are tagged for refinement using a feature detection criteria implemented by the
user. Tagged cells are covered by a disjoint union of boxes which form a new refined mesh level® Our
current tagging algorithm is based on vorticity magnitude.

13 of 22

American Institute of Aeronautics and Astronautics

VI.B. Refinement Operator

In a hierarchical, patch-based SAMR scheme, data from coarser levels need to be interpolated to finer levels.
Two occurrences require interpolated data from coarse levels to fine levels: coarse-fine boundaries and coarse
cells are that overlapped from newly formed fined cells. In the case of coarse-fine boundaries, ghost cells
need to be provided on the fine level to do the flux calculation. Alternatively when a coarse level is refined,
newly refined cells need to have their data interpolated from the underlying coarse cells. To interpolate data
from a coarse cell to a fine cell, an interpolation mechanism called a refinement operator is needed.

Interior quadrature points (as in Fig are located in each shaded cell in Fig Since each of the refined
cells is properly nested in a respective coarse cell, our refine operator is a Galerkin projection to the respective
mapped subregion of the coarse element. For example in one-dimension, we let the native coarse coordinates

be represented by Ecoarse = [—1,1] as seen in F ig Each of the native fine cells that cover the coarse cell
have local reference coordinates ane = [—1,1]. We can map the local reference fine cell coordinates to the
coarse cell coordinates & = [—1,0] and & = [0, 1] for the overlapping left and right fine cells, respectively.

That is, we can observe the local reference coordinates for the fine cells to be a subset of the coarse reference
coordinates. To get the left fine solution g% in Fig from the coarse solution coefficients Uy, a coordinate

transformation &gne = [—1,1] 1 = & = [—1,0] is used then giving the projection P;:
al 1 1
£fzne Z <2€ﬁne - 2) U] (32)
7=0

where W; are the coarse cell basis functions. Similarly, to get the right fine solution q®, a coordinate

transformation &gne = [—1,1] 1 = & = [0, 1] is used then giving the projection Pj:
al 1 1
gfzne Z <2§ﬁne + 2) UJ (33)
7=0

In three dimensions, we transform each coordinate to the respective coarse subset coordinates, &; or &», then
perform the Galerkin projection using the basis evaluated at the transformed coordinates.

Figure 12. Coarse-fine boundary interface: fine green cells are ghost cells that are interpolated from coarse green cells.

VI.C. Coarsening Operator

Conversely to the refine operator, a interpolation mechanism is needed to transfer data on fine levels to coarse
levels. This mechanism is called a coarsening operator. Coarse cells that have fine cells overlaying them are
called non-valid cells in contrast to exposed cells which are called valid cells. The coarsening operator is
performed for all non-valid cells after every Runge-Kutta stage to provide more accurate solution data from
overlapping fine cells. In order to maintain discrete conservation of the conserved variables, we employ a
mass matrix Galerkin projection approach for the coarsening operator. We need to gather two fine element
solutions and form a coarse element solution as shown in Fig[I4] for the one-dimensional example. To solve

14 of B2

American Institute of Aeronautics and Astronautics

b=+ §=0 §=0 &=1

O O O O O O O O
P1 PZ

| M) () () () ()

| —/ —/ / —/ —/

Figure 13. One-dimensional refine operator via Galerkin projection.

for the coarse solution Uj, the mass matrix Galerkin projection starts as:

N
> Wi(OU; = () (34)

j=1

where ¢’ is the composite vector of fine solution coefficients in the two overlapping fine level cells. Next, we
multiply both sides of equation with test functions and integrate over the standard element noting that
the right hand side can be split across the fine elements:

N 1 0 1 |
;/1%<fm(s>wd5_/1xm<s>q1 d§+/0 U (€) g dé for i= 1, N (35)

where ¢; is the left fine solution and g5 is the right fine solution. The elemental mass matrix is:

1
M, = / U0 (36)
-1

Lastly, we note that using nodal basis functions, ¢; = W7 (2¢ + 1) and ¢z = U7 (2¢ — 1) and invert the mass
matrix to form a matrix G:

1

0
G- | [wourecrnas [wiour e (37)

-1

We then obtain the coarse solution U from the fine solutions ¢; and gs:
U=G"|q;q] (38)

Thus the resulting coarse solution is obtained by a matrix-vector product of the matrix G and the composite
vector consisting of the respective fine element solutions that overlap the coarse solution.

VII. Structured Adaptive Solver Results

Two model problems are used to demonstrate the SAMR framework of SAMCart-DG. The first case is
the inviscid convection of a two-dimensional isentropic vortex. This problem demonstrates the ability of the
SAMR framework to track features in a flow while maintaining the same computational error as a completely
refined, fixed Cartesian grid while utilizing a fraction of the total number of elements. The second case is
an illustrative example of flow over a cube. This problem highlights the SAMR solver’s ability to maintain
flow characteristics by resolving unsteady wake regions while maintaining low element counts in comparison
to a fully refined fixed grid.

15 of 22

American Institute of Aeronautics and Astronautics

b=+ 6=1 &=-1 &=1

O O O O O O O O O O
Gl GZ
I M)))) O |
| —/ -/ / -/ —/ |
& =-1 E =1
Figure 14. One-dimensional coarsen operator via mass matrix Galerkin projection.
VII.A. Convection of an Isentropic Vortex
The inviscid isentropic vortex is initialized with a perturbation of the uniform flow described as:
su = —U,BLYe ;%y“ 05(1-r%) (39)
Sv = Voﬂ%eoﬁ(l—/,ﬂ) (40)
_ 2
T = _(’Y 1)ﬁ 62(1—7“2) (41)
16972
1
p = (1+T)7 (42)
= pot+p -1 (43)
(44)

where Uy, Vj is the convecting speed of the vortex in the z— and y—directions, S = 1 is the vortex strength,
R = 27 is the characteristic radius, x., y. are the vortex center coordinates, and pg is the free-stream
pressure. The exact solution of this flow is a non-dissipating convection of the vortex at the speed Uy, V.
The following results use a free-stream Mach number of 0.5 with the vortex traveling in the x—direction.
The fixed grid uses a 256 x 128 x 2 mesh. The SAMR meshes are set to have the same maximum resolution
as the fixed mesh. Elements are selected for refinement when the magnitude of vorticity at any quadrature
point located in the element is larger than 10~ 7571 Fig shows the fixed grid and the final adapted
grids using five levels of refinement for p = 2 and p = 4 with the refinement ratio set to (2,2,1) meaning
when an element is selected for refinement, the x- and y-directions are refined by a factor two whereas the
z-direction has a fixed resolution. To demonstrate the SAMR’s ability to track the vortex while maintaining
accuracy, we have simulated three solution orders: third-, fourth-, and fifth-order, using a maximum number
of refinement levels of two, three, and five. In Figll6] we show trends for solution time versus RMS error
and solution time versus relative percent error. The RMS error is computed using the analytic solution at
the final solution time of the simulation and is calculated as:

2
RMS (U) = \/ Jo (U - Ua;;rlytic) an .

where 2 is the valid region domain and || is the valid region area. The relative percent error is computed
using the RMS error of the solution obtained on the fully refined fixed grid, Ugxeq as the reference solution
which is computed as:

~ [RMS (U) — RMS (Usixea)|

Relative Percent Error (U) RMS (Utixed)
fixed

-100% (46)

16 of 22

American Institute of Aeronautics and Astronautics

It is demonstrated that the SAMR can maintain the error relative to that of the fixed grid to within 0.0004%,
0.025%, and 0.08% relative error for p = 2,3, and 4, respectively. We note that the fixed grid RMS error
drops by a factor of 10 when increasing the order of accuracy by one, making the relative error more sensitive
for higher order of accuracies. We demonstrate the cumulative space-time element counts of each of the
isentropic vortex simulations in Fig[T7] We sum all elements on all levels at each iteration. For higher orders
of accuracy, a smaller time step is required thus increasing the total number of time steps and total number
of space-time elements for the entire simulation. For fifth-order using five levels of refinement, we observe a
15x element reduction over the fixed grid for this two-dimensional problem. The SAMR significantly reduces
the total number of space-time elements used during a simulation and maintains virtually the same error as
the fixed mesh solution compared to the analytic solution. Although CPU time does not exactly correlate
to the number of cells, efficiency improvements of the AMR operations are currently under development and
we expect the CPU times to have a similar reduction as the reduction of space-time elements with minimal
overhead in future work.

VII.B. Flow over a Cube

To demonstrate the three-dimensional feature tracking ability of SAMCart-DG, we model a flow over a cube
by placing a 2 x 2 viscous wall boundary condition centered on the left face of a rectangular domain given by
non-dimensional coordinates (0, —10,—10) x (40, 10,10). Using a fourth-order simulation, cells are refined
when the magnitude of vorticity at any quadrature point in a cell is greater than 0.2s7!. In Fign we
illustrate the adaptive meshing capability to track vorticies. In Fig[I9] we demonstrate a time sequence of
vorticity contours and their respective grids. The maximum refinement resolution of this simulation is 320
x 160 x 160. We allow a total of five levels during the simulation and start the simulation with a base grid
of 20 x 10 x 10. In comparison to a fixed refined grid, the total space-time element count is approximately
ten times less using the SAMR framework. We note that the vorticies expand to fill a majority of the
computational domain in this example.

VIII. Concluding Remarks and Future Work

We have developed a collocated, discontinuous Galerkin solver in a block-structured Cartesian framework
utilizing a tensor-product basis formulation. Additionally, we have successfully implemented this high-
order, Cartesian mesh-based solver into a structured adaptive mesh refinement framework using the open
source framework SAMRAI. We have demonstrated the competitive accuracy and efficiency attributes of
our Cartesian DG implementation, and have shown that the structured adaptive mesh refinement (SAMR)
approach is capable of maintaining the same error levels as a fixed fine grid while significantly reducing the
total element count for time-dependent simulations. We also have demonstrated the SAMR, framework in a
three-dimensional model problem which was able to track features in the flow while reducing the space-time
element counts by an order of magnitude with a majority of the computational domain having significant
flow features.

At present, the efficiency of certain aspects of the implementation remain non-optimal such as the high-
order coarsen and refine operations, and in certain cases the adaptive meshing operations can constitute
a significant fraction of the overall solution time. Through further optimization we expect the CPU times
for the adaptive mesh solver to scale proportionally with the total number of space-time elements in the
simulation.

To further extend the adaptive capability of the solver, future work will extend the SAMR capability to
include p-enrichment in the SAMRAT framework, in order to enable combined h-p refinement. To apply this
solver to real engineering problems, following work will adopt the multi-solver, multi-mesh paradigm using
an overset methodology following previous work with low-order solvers.

IX. Acknowledgments

This work was partially funded under ONR Grant N00014-14-1-0045 and by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671. Computer time was
provided by the University of Wyoming Advanced Computing Research Center (ARCC) and the NCAR-
Wyoming Supercomputer Alliance.

17 of 22

American Institute of Aeronautics and Astronautics

References

THornung, R. D., Wissink, A. M., and Kohn, S. R., “Managing complex data and geometry in parallel structured AMR
applications,” Engineering with Computers, Vol. 22, No. 3-4, 2006, pp. 181-195.

2Adams, M., Colella, P., Graves, D. T., Johnson, J., Keen, N., Ligocki, T. J., Martin, D. F., McCorquodale, P., Schwartz,
D. M. P., Sternberg, T., and Straalen, B. V., “Chombo Software Package for AMR Applications Design Document,” 2014,
Lawrence Berkeley National Laboratory Technical Report LBNL-6616E.

3Wissink, A., Kamkar, S., Pulliam, T., Sitaraman, J., and Sankaran, V., “Cartesian Adaptive Mesh Refinement for
Rotorcraft Wake Resolution,” AIAA Paper 2010-4554, 28th ATAA Applied Aerodynamics Conference, Chicago, 1L, June 2010.

4Wissink, A., Jayaraman, B., Datta, A., Sitaraman, J., Potsdam, M., Kamkar, S., Mavriplis, D., Yang, Z., Jain, R., Lim,
J., et al., “Capability enhancements in Version 3 of the Helios high-fidelity rotorcraft simulation code,” ATAA Paper 2012-713,
50th AIAA Aerospace Sciences Meeting, Nashville, TN, January 2012.

5Fadlun, E., Verzicco, R., Orlandi, P., and Mohd-Yusof, J., “Combined immersed-boundary finite-difference methods for
three-dimensional complex flow simulations,” Journal of Computational Physics, Vol. 161, No. 1, 2000, pp. 35-60.

6Peskin, C. S., “The immersed boundary method,” Acta numerica, Vol. 11, 2002, pp. 479-517.

"Mittal, R. and Iaccarino, G., “Immersed boundary methods,” Annu. Rev. Fluid Mech., Vol. 37, 2005, pp. 239-261.

8 Aftosmis, M. J., “Solution adaptive Cartesian grid methods for aerodynamic flows with complex geometries,” VKI Lecture
Series, Vol. 2, 1997.

9ngram, D. M., Causon, D. M., and Mingham, C. G., “Developments in Cartesian cut cell methods,” Mathematics and
Computers in Simulation, Vol. 61, No. 3, 2003, pp. 561-572.

10Marshall, D. D. and Ruffin, S. M., “A new inviscid wall boundary condition treatment for embedded boundary Cartesian
grid schemes,” ATAA Paper 2004-583, 42nd ATIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2004.

HSitaraman, J., Mavriplis, D., and Duque, E. P., “Wind Farm Simulations Using a Full Rotor Model for Wind Turbines,”
ATAA Paper 2014-1086, 32nd ASME Wind Energy Symposium, National Harbor, MD, January 2014.

12Cockburn, B., Karniadakis, G. E., and Shu, C.-W., The development of discontinuous Galerkin methods, Springer, 2000.

13Luo, H., Baum, J. D., and Lohner, R., “A discontinuous Galerkin method based on a Taylor basis for the compressible
flows on arbitrary grids,” Journal of Computational Physics, Vol. 227, No. 20, 2008, pp. 8875-8893.

4 Ceze, M. and Fidkowski, K. J., “Drag prediction using adaptive discontinuous finite elements,
Vol. 51, No. 4, 2014, pp. 1284-1294.

5Darmofal, D. L., Allmaras, S. R., Yano, M., and Kudo, J., “An adaptive, higher-order discontinuous Galerkin finite
element method for aerodynamics,” ATAA Paper 2013-2871, 21st AIAA Computational Fluid Dynamics Conference, San Diego,
CA, June 2013.

16Haga, T., Gao, H., and Wang, Z., “A high-order unifying discontinuous formulation for the Navier-Stokes equations on
3D mixed grids,” Mathematical Modelling of Natural Phenomena, Vol. 6, No. 03, 2011, pp. 28-56.

"Hartmann, R., “Higher-order and adaptive discontinuous Galerkin methods with shock-capturing applied to transonic
turbulent delta wing flow,” International Journal for Numerical Methods in Fluids, Vol. 72, No. 8, 2013, pp. 883-894.

18Brazell, M. J. and Mavriplis, D. J., “3D Mixed Element Discontinuous Galerkin with Shock Capturing,” AIAA Paper
2013-3064, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA., June 2013.

19Wang, L., Anderson, W. K., Erwin, J. T., and Kapadia, S., “Discontinuous Galerkin and Petrov Galerkin methods for
compressible viscous flows,” Computers & Fluids, Vol. 100, 2014, pp. 13-29.

20Glasby, R. S., Burgess, N., Anderson, K., Wang, L., Allmaras, S., and Mavriplis, D., “Comparison of SU/PG and
DG finite-element techniques for the compressible Navier-Stokes equations on anisotropic unstructured meshes,” AIAA Paper
2013-691, 51st AIAA Aerospace Sciences Meeting, Grapevine, TX, January 2013.

21Huynh, H. and Kroll, N., “Third International Workshop on High-Order CFD Methods,” https://www.grc.nasa.gov/
hiocfd/.

22Diosady, L. T. and Murman, S. M., “Design of a Variational Multiscale Method for Turbulent Compressible Flows,”
ATAA Paper 2013-2870, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, June 2014.

23Hindenlang, F., Gassner, G. J., Altmann, C., Beck, A., Staudenmaier, M., and Munz, C.-D., “Explicit discontinuous
Galerkin methods for unsteady problems,” Computers & Fluids, Vol. 61, 2012, pp. 86—93.

24El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G., and Johansson, A. V., “Direct numerical
simulation of turbulent pipe flow at moderately high Reynolds numbers,” Flow, turbulence and combustion, Vol. 91, No. 3,
2013, pp. 475-495.

2580lin, P., Segeth, K., and Dolezel, 1., Higher-order finite element methods, CRC Press, 2004.

26Brazell, M. J., Mavriplis, D. J., and Sitaraman, J., “An Overset Mesh Approach for 3D Mixed Element High Order
Discretizations,” ATAA Paper 2015-1739, 53rd ATAA Aerospace Sciences Meeting, Kissimmee, FL, January 2014.

2"Harten, A., Lax, P. D., and Leer, B. v., “On upstream differencing and Godunov-type schemes for hyperbolic conservation
laws,” SIAM review, Vol. 25, No. 1, 1983, pp. 35-61.

28Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of computational physics,
Vol. 43, No. 2, 1981, pp. 357-372.

29Hartmann, R. and Houston, P., “An optimal order interior penalty discontinuous Galerkin discretization of the compress-
ible Navier-Stokes equations,” J. Comput. Phys., Vol. 227, No. 22, 2008/11/20, pp. 9670 — 85.

30Shahbazi, K., Mavriplis, D., and Burgess, N., “Multigrid algorithms for high-order discontinuous Galerkin discretizations
of the compressible Navier-Stokes equations,” J. Comput. Phys., Vol. 228, No. 21, 2009/11/20, pp. 7917 — 40.

31Kopriva, D. A. and Gassner, G., “On the quadrature and weak form choices in collocation type discontinuous Galerkin
spectral element methods,” Journal of Scientific Computing, Vol. 44, No. 2, 2010, pp. 136-155.

32Kahaner, D., Moler, C., and Nash, S., “Numerical methods and software,” Englewood Cliffs: Prentice Hall, 1989, Vol. 1,
1989.

7 Journal of Aircraft,

18 of 22

American Institute of Aeronautics and Astronautics

https://www.grc.nasa.gov/hiocfd/
https://www.grc.nasa.gov/hiocfd/

33Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral methods: fundamentals in single domains,
Springer, 2006.

34Kirby, R. M. and Karniadakis, G. E., “De-aliasing on non-uniform grids: algorithms and applications,
Computational Physics, Vol. 191, No. 1, 2003, pp. 249-264.

35Gassner, G. J. and Beck, A. D., “On the accuracy of high-order discretizations for underresolved turbulence simulations,”
Theoretical and Computational Fluid Dynamics, Vol. 27, No. 3-4, 2013, pp. 221-237.

36Butcher, J. C., The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods,
Wiley-Interscience, 1987.

37 Jameson, A., Schmidt, W., Turkel, E., et al., “Numerical solutions of the Euler equations by finite volume methods using
Runge-Kutta time-stepping schemes,” ATAA Paper 1981-1259, 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA,
June 1981.

38CGuarini, S., Direct Numerical Simulation of Supersonic Turbulent Boundary Layers, Ph.D. thesis, Stanford University,
June 1998.

39Taylor, G. and Green, A., “Large Ones,” Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, Vol. 158, No. 895, 1937, pp. 499-521.

40Brachet, M., “Direct simulation of three-dimensional turbulence in the TaylorGreen vortex,” Fluid Dynamics Research,
Vol. 8, No. 1, 1991, pp. 1-8.

4 povitsky, A., “High-incidence 3-D lid-driven cavity flow,” ATAA Paper 2001-2847, 15th AIAA Computational Fluid
Dynamics Conference, Anaheim, CA, June 2001.

42Povitsky, A., “Three-dimensional flow in cavity at yaw,” Nonlinear Analysis: Theory, Methods € Applications, Vol. 63,
No. 5, 2005, pp. €1573—e1584.

43Feldman, Y. and Gelfgat, A. Y., “From multi-to single-grid CFD on massively parallel computers: Numerical experiments
on lid-driven flow in a cube using pressure—velocity coupled formulation,” Computers & Fluids, Vol. 46, No. 1, 2011, pp. 218-223.

4 ’Humieres, D., “Multiple-relaxation—time lattice Boltzmann models in three dimensions,” Philosophical Transactions of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 360, No. 1792, 2002, pp. 437-451.

45Gelfgat, A. and Feldman, Y., “Reply to a letter of A. Povitsky regarding benchmark problem of 3D flow in a cubic cavity
driven by a diagonally moving lid,” Computers € Fluids, Vol. 92, 2014, pp. 224.

46Ringleb, F., “Exakte Loesungen der Differentialgleichungen einer adiabatischen Gasstroemung,” A. Angew. Math. Mech.,
Vol. 20, No. 4, 1940, pp. 185-198.

47van Ress, W., Leonard, A., Pullin, D., and Koumoutsakos, P., “A comparison of vortex and pseudo-spectral methods for
the simulation of periodic vortical flows at high Reynolds number,” J. Comput. Phys., Vol. 230, 2011, pp. 2794-2805.

48 Albensoeder, S. and Kuhlmann, H. C., “Accurate three-dimensional lid-driven cavity flow,” Journal of Computational
Physics, Vol. 206, No. 2, 2005, pp. 536-558.

49Povitsky, A., “Three-dimensional flow in cavity at Yaw,” Tech. rep., DTIC Document, 2001.

50National Center for Atmospheric Research, Boulder, CO, Yellowstone: IBM iDataPlex System (Climate Simulation
Laboratory), 2012, http://n2t.net/ark:/85065/d7wd3xhc.

51Wissink, A. M., Sitaraman, J., Sankaran, V., Mavriplis, D. J., and Pulliam, T. H., “A multi-code python-based infras-
tructure for overset CFD with adaptive cartesian grids,” ATAA Paper 2008-927, 46th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, NV, January 2008.

52Kopera, M. A. and Giraldo, F. X., “Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of
the compressible Euler equations with application to atmospheric simulations,” Journal of Computational Physics, Vol. 275,
2014, pp. 92-117.

53Gunney, B. T., Wissink, A. M., and Hysom, D. A., “Parallel clustering algorithms for structured AMR,” Journal of
Parallel and Distributed Computing, Vol. 66, No. 11, 2006, pp. 1419-1430.

54 Anderson, R., Arrighi, W., Elliott, N., Gunney, B., and Hornung, R., “SAMRAI Concepts and Software Design,” Feb
2013, https://computation.llnl.gov/project/SAMRAI/download/SAMRAI-Concepts_SoftwareDesign.pdf.

”

Journal of

19 of 22

American Institute of Aeronautics and Astronautics

https://computation.llnl.gov/project/SAMRAI/download/SAMRAI-Concepts_SoftwareDesign.pdf

Fseudocolor
war: Dersity

— 09927

- 09855

— 09782

(a) p=2, fixed mesh

Fseudocolor
war: Dersity

— 09927

-— 09855

— 09782

0.8710
M 1.000
Min: 02710

(b) p=2, five refinement levels

Fseudocolor
war: Dersity

— 09928

-— 09855

— 09783

09711
M 1.000
Min: 09711

(c) p=4, five refinement levels

Figure 15. Density on fixed and SAMR grids for isentropic vortex convection at the final solution time.

20 of 221

American Institute of Aeronautics and Astronautics

4.5E-05 7E08

Fixed Fixed Fixed
- — — 2Llewls oE07 2Levels 2 Levels
4E05 - —+=-—- 3Levels - 3levels - - 3 Levels
— —— S5levels 5 Levels 65E08 5 Levels
35605 8EO7 [
6E08 |
2 sEOs| 2 2
i w L] L
- o 7E07 h55E08
Ezss-os F E E
se08 |
2805 6E07 |-
e 45E08
5807
- ¢ TN EEENENREN BURVATETEN SVEETETE RS RATIN AR AR R VI BRI AN REEE BRI SNSRI NSRRI SR RIS NSRRI EERTEEN SVATETATE ERNSAIN AATA AR S
TE0S RS e w0 Ta0 0w 0 = w0 Thao 0w B8RS 0z o0 Ta0 0 6o
ime ime ime
(a) p=2 (b) p=3 (c) p=4
0.0004 003 01
- — — 2Llewls — = — 2Levls — — — 2Lewls
0.00035 ——— 3 Levels ———— 3 Levels E— 3 Levels
——— 5levels 0025 ——— 5Levels oos| ——— Slewels __
- e
0.0003 - P PR
. . [ZRNEN . A X
5 5 oozl o 3 RN BN
\ij 0-00025 | &5 I ~ o 006 - 2 3y
-
E i [Eoonk : = ¢
g 0.0002 || 3 V 8 [} t\
s i s ;A 3 004 1 NN
& 900015 | e ; a Y-
® | o ooif il ° I \i
£ I E I 2 !
S o001 i 2 sk i 5 o0z I
[i < Y [.[
5E05
Al
i jll of TRk op ="
of ——JL
EE I I I BN WA B I P PN ANETRANEN SNRTRTETIN FURNATES SRRTETIVEN ARTATAT SR o . A N IRANET IS INATENINE INAENAT SR
SE0STg oz @ T s 6 0.005 =5 ez w0 Ta0 s o 00275 020 @ T s
ime ime ime
(d) p=2 (e) p=3 (f) p=4

Figure 16. Computed error levels for the convection of an isentropic vortex problem using various refinement levels.

900,000,000

800,000,000

700,000,000

600,000,000

500,000,000
M Third Order
M Fourth Order
o Fifth Order

400,000,000

300,000,000

Cumulative Element Count

200,000,000

100,000,000

Fixed 2 Levels 3 Levels 5 Levels
AMR Levels

Figure 17. Convection of an isentropic vortex using various refinement levels: total space-time elements.

21 of 221

American Institute of Aeronautics and Astronautics

DB: summary.samrai
Cycle: 42000 Time:249.141

L7 7N

L7
77
L

L

(a) Vorticity contours: step 4000

Figure 18. Flow over a cube (Re = 1000): AMR grid colored by vorticity magnitude

DB: summary.samrai DB: summary.samrai
Cycle: 4000 Time:30.4209 Cycle: 4000 Time:30.4209

(a) Vorticity contours: step 4000 (b) AMR grid colored by vorticity magnitude: step 4000
DB: summary.samrai DB: summary.samrai
Cycle: 18000 Time:110.895 Cycle: 18000 Time:110.895

(c) Vorticity contours: step 18000 (d) AMR grid colored by vorticity magnitude: step 18000
DB: summary.samrai DB: summary.samrai
Cycle: 42000 Time:249.141 Cycle: 42000 Time:249.141

(e) Vorticity contours: step 42000 (f) AMR grid colored by vorticity magnitude: step 42000

Figure 19. Three-dimensional flow over a cube: Re = 1000.

22 of 221

American Institute of Aeronautics and Astronautics

	Introduction
	Governing Equations
	Spatial Discretization
	Discontinuous Galerkin Formulation
	Reference Element Mapping
	Solution and Flux Approximation
	Time Derivative Integral
	Volume Integral
	Surface Integral

	Temporal Discretization
	Block Solver Results
	Mesh Resolution Study: Ringleb Flow
	Taylor-Green Vortex
	Diagonally Lid-Driven Cavity
	Computational Performance and Parallel Scalability

	Structured Adaptive Solver
	Structured Adaptive Mesh Refinement Framework
	Refinement Operator
	Coarsening Operator

	Structured Adaptive Solver Results
	Convection of an Isentropic Vortex
	Flow over a Cube

	Concluding Remarks and Future Work
	Acknowledgments

